Properties

Label 8-98e4-1.1-c7e4-0-0
Degree $8$
Conductor $92236816$
Sign $1$
Analytic cond. $878344.$
Root an. cond. $5.53296$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s + 64·4-s + 1.02e3·8-s + 2.00e3·9-s − 3.16e3·11-s − 1.63e4·16-s − 3.20e4·18-s + 5.05e4·22-s − 2.00e5·23-s + 9.70e4·25-s + 4.63e4·29-s + 6.55e4·32-s + 1.28e5·36-s − 1.00e6·37-s − 2.24e6·43-s − 2.02e5·44-s + 3.20e6·46-s − 1.55e6·50-s − 2.57e6·53-s − 7.42e5·58-s + 7.86e5·64-s + 1.58e6·67-s − 8.91e6·71-s + 2.05e6·72-s + 1.60e7·74-s − 5.02e6·79-s + 4.78e6·81-s + ⋯
L(s)  = 1  − 1.41·2-s + 1/2·4-s + 0.707·8-s + 0.917·9-s − 0.715·11-s − 16-s − 1.29·18-s + 1.01·22-s − 3.43·23-s + 1.24·25-s + 0.353·29-s + 0.353·32-s + 0.458·36-s − 3.26·37-s − 4.30·43-s − 0.357·44-s + 4.85·46-s − 1.75·50-s − 2.37·53-s − 0.499·58-s + 3/8·64-s + 0.643·67-s − 2.95·71-s + 0.648·72-s + 4.61·74-s − 1.14·79-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 92236816 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 92236816 ^{s/2} \, \Gamma_{\C}(s+7/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(92236816\)    =    \(2^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(878344.\)
Root analytic conductor: \(5.53296\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 92236816,\ (\ :7/2, 7/2, 7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.0009869861452\)
\(L(\frac12)\) \(\approx\) \(0.0009869861452\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p^{3} T + p^{6} T^{2} )^{2} \)
7 \( 1 \)
good3$C_2^3$ \( 1 - 2006 T^{2} - 758933 T^{4} - 2006 p^{14} T^{6} + p^{28} T^{8} \)
5$C_2^3$ \( 1 - 3882 p^{2} T^{2} + 5304299 p^{4} T^{4} - 3882 p^{16} T^{6} + p^{28} T^{8} \)
11$C_2^2$ \( ( 1 + 1580 T - 16990771 T^{2} + 1580 p^{7} T^{3} + p^{14} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 27914122 T^{2} + p^{14} T^{4} )^{2} \)
17$C_2^3$ \( 1 - 414811618 T^{2} + 3690851868376995 T^{4} - 414811618 p^{14} T^{6} + p^{28} T^{8} \)
19$C_2^3$ \( 1 + 1230606410 T^{2} + 715385450550203979 T^{4} + 1230606410 p^{14} T^{6} + p^{28} T^{8} \)
23$C_2^2$ \( ( 1 + 100152 T + 6625597657 T^{2} + 100152 p^{7} T^{3} + p^{14} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 11594 T + p^{7} T^{2} )^{4} \)
31$C_2^3$ \( 1 - 50886712510 T^{2} + \)\(18\!\cdots\!79\)\( T^{4} - 50886712510 p^{14} T^{6} + p^{28} T^{8} \)
37$C_2^2$ \( ( 1 + 503058 T + 158135474231 T^{2} + 503058 p^{7} T^{3} + p^{14} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 189168160690 T^{2} + p^{14} T^{4} )^{2} \)
43$C_2$ \( ( 1 + 560516 T + p^{7} T^{2} )^{4} \)
47$C_2^3$ \( 1 - 927371942814 T^{2} + \)\(60\!\cdots\!27\)\( T^{4} - 927371942814 p^{14} T^{6} + p^{28} T^{8} \)
53$C_2^2$ \( ( 1 + 1287998 T + 484227708167 T^{2} + 1287998 p^{7} T^{3} + p^{14} T^{4} )^{2} \)
59$C_2^3$ \( 1 - 1081866054630 T^{2} - \)\(50\!\cdots\!61\)\( T^{4} - 1081866054630 p^{14} T^{6} + p^{28} T^{8} \)
61$C_2^3$ \( 1 - 5968548381994 T^{2} + \)\(25\!\cdots\!95\)\( T^{4} - 5968548381994 p^{14} T^{6} + p^{28} T^{8} \)
67$C_2^2$ \( ( 1 - 792500 T - 5432655355323 T^{2} - 792500 p^{7} T^{3} + p^{14} T^{4} )^{2} \)
71$C_2$ \( ( 1 + 2229904 T + p^{7} T^{2} )^{4} \)
73$C_2^3$ \( 1 + 14466065735054 T^{2} + \)\(87\!\cdots\!07\)\( T^{4} + 14466065735054 p^{14} T^{6} + p^{28} T^{8} \)
79$C_2^2$ \( ( 1 + 2513080 T - 12888337899759 T^{2} + 2513080 p^{7} T^{3} + p^{14} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 26023692819766 T^{2} + p^{14} T^{4} )^{2} \)
89$C_2^3$ \( 1 - 23586880683858 T^{2} - \)\(14\!\cdots\!77\)\( T^{4} - 23586880683858 p^{14} T^{6} + p^{28} T^{8} \)
97$C_2^2$ \( ( 1 + 78940465961026 T^{2} + p^{14} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.717974709427399592047562642210, −8.708238320354768714451704275381, −8.361420981990082869761797416423, −7.949172909332922364097945928445, −7.76900269833895795053291526454, −7.47064630867056358301676533999, −7.13779761702967345289537562729, −6.72857042810454033096815117698, −6.62406057140000830247485138044, −6.05344964255170918228997092607, −5.96176960434390864091394016959, −5.29343721854090048115055614081, −4.93492586712104281266058631060, −4.73799178811581948735492076221, −4.56912589864389099866828931782, −3.73492422173670529874935517375, −3.65021241076755231842150699131, −3.33275672248703618033709312993, −2.67998659725291350171479692793, −2.18559574608766681022695255385, −1.61061612021494771274371728038, −1.61056369410124416575660324663, −1.30505577496510803993286620669, −0.35645444864423423610875083509, −0.01137857701096321102806308205, 0.01137857701096321102806308205, 0.35645444864423423610875083509, 1.30505577496510803993286620669, 1.61056369410124416575660324663, 1.61061612021494771274371728038, 2.18559574608766681022695255385, 2.67998659725291350171479692793, 3.33275672248703618033709312993, 3.65021241076755231842150699131, 3.73492422173670529874935517375, 4.56912589864389099866828931782, 4.73799178811581948735492076221, 4.93492586712104281266058631060, 5.29343721854090048115055614081, 5.96176960434390864091394016959, 6.05344964255170918228997092607, 6.62406057140000830247485138044, 6.72857042810454033096815117698, 7.13779761702967345289537562729, 7.47064630867056358301676533999, 7.76900269833895795053291526454, 7.949172909332922364097945928445, 8.361420981990082869761797416423, 8.708238320354768714451704275381, 8.717974709427399592047562642210

Graph of the $Z$-function along the critical line