L(s) = 1 | + 3·2-s + 5·4-s − 8·7-s + 6·8-s + 9-s + 6·11-s − 4·13-s − 24·14-s + 4·16-s + 6·17-s + 3·18-s − 6·19-s + 18·22-s + 12·23-s + 5·25-s − 12·26-s − 40·28-s − 10·31-s + 18·34-s + 5·36-s + 4·37-s − 18·38-s − 32·43-s + 30·44-s + 36·46-s + 6·47-s + 34·49-s + ⋯ |
L(s) = 1 | + 2.12·2-s + 5/2·4-s − 3.02·7-s + 2.12·8-s + 1/3·9-s + 1.80·11-s − 1.10·13-s − 6.41·14-s + 16-s + 1.45·17-s + 0.707·18-s − 1.37·19-s + 3.83·22-s + 2.50·23-s + 25-s − 2.35·26-s − 7.55·28-s − 1.79·31-s + 3.08·34-s + 5/6·36-s + 0.657·37-s − 2.91·38-s − 4.87·43-s + 4.52·44-s + 5.30·46-s + 0.875·47-s + 34/7·49-s + ⋯ |
Λ(s)=(=(68574961s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=(68574961s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
68574961
= 74⋅134
|
Sign: |
1
|
Analytic conductor: |
0.278787 |
Root analytic conductor: |
0.852431 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 68574961, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.126927175 |
L(21) |
≈ |
2.126927175 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 7 | C2 | (1+4T+pT2)2 |
| 13 | C1 | (1+T)4 |
good | 2 | C22×C22 | (1−3T+5T2−3pT3+p2T4)(1−T2+p2T4) |
| 3 | C23 | 1−T2−8T4−p2T6+p4T8 |
| 5 | C2×C22 | (1−pT2)2(1+pT2+p2T4) |
| 11 | C22 | (1−3T−2T2−3pT3+p2T4)2 |
| 17 | D4×C2 | 1−6T+13T2+66T3−372T4+66pT5+13p2T6−6p3T7+p4T8 |
| 19 | C22 | (1+3T−10T2+3pT3+p2T4)2 |
| 23 | D4×C2 | 1−12T+67T2−372T3+2088T4−372pT5+67p2T6−12p3T7+p4T8 |
| 29 | C22 | (1+38T2+p2T4)2 |
| 31 | C22 | (1+5T−6T2+5pT3+p2T4)2 |
| 37 | D4×C2 | 1−4T−17T2+164T3−872T4+164pT5−17p2T6−4p3T7+p4T8 |
| 41 | C22 | (1+62T2+p2T4)2 |
| 43 | C2 | (1+8T+pT2)4 |
| 47 | D4×C2 | 1−6T−pT2+66T3+2988T4+66pT5−p3T6−6p3T7+p4T8 |
| 53 | D4×C2 | 1−6T−59T2+66T3+4308T4+66pT5−59p2T6−6p3T7+p4T8 |
| 59 | D4×C2 | 1+6T−71T2−66T3+5844T4−66pT5−71p2T6+6p3T7+p4T8 |
| 61 | C22 | (1+3T−52T2+3pT3+p2T4)2 |
| 67 | C22 | (1−3T−58T2−3pT3+p2T4)2 |
| 71 | C22 | (1+62T2+p2T4)2 |
| 73 | D4×C2 | 1+8T−53T2−232T3+3688T4−232pT5−53p2T6+8p3T7+p4T8 |
| 79 | D4×C2 | 1+8T−65T2−232T3+5344T4−232pT5−65p2T6+8p3T7+p4T8 |
| 83 | C2 | (1+pT2)4 |
| 89 | C23 | 1−173T2+22008T4−173p2T6+p4T8 |
| 97 | D4 | (1+8T+30T2+8pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.41507271308888056682771179061, −10.19511879307132675294626325601, −9.963985434852701662601982436292, −9.576703550189450260791544118253, −9.365255247777837370764012818202, −9.025745998523202722389118705428, −8.946273652550477929618178825074, −8.458333016419311493913696830101, −7.974674709273874811639719904103, −7.28707580737416211507804133607, −7.00073560932273874586189697192, −6.98263698841547473536537244743, −6.77337655772861857255230814779, −6.37522657177174766914774324039, −5.96738277904419845478407978227, −5.94049446538056836979371913842, −5.09779491066717041247569614310, −5.05436121462349775984850677814, −4.64406321105409139521068003200, −3.97646047461772695807843743915, −3.77734419038093641113834944118, −3.35327604878179764201177913968, −3.00255312100191105218792907301, −2.82081953332938905818375982573, −1.69057622283079173193073362078,
1.69057622283079173193073362078, 2.82081953332938905818375982573, 3.00255312100191105218792907301, 3.35327604878179764201177913968, 3.77734419038093641113834944118, 3.97646047461772695807843743915, 4.64406321105409139521068003200, 5.05436121462349775984850677814, 5.09779491066717041247569614310, 5.94049446538056836979371913842, 5.96738277904419845478407978227, 6.37522657177174766914774324039, 6.77337655772861857255230814779, 6.98263698841547473536537244743, 7.00073560932273874586189697192, 7.28707580737416211507804133607, 7.974674709273874811639719904103, 8.458333016419311493913696830101, 8.946273652550477929618178825074, 9.025745998523202722389118705428, 9.365255247777837370764012818202, 9.576703550189450260791544118253, 9.963985434852701662601982436292, 10.19511879307132675294626325601, 10.41507271308888056682771179061