L(s) = 1 | − 8·4-s + 7-s − 2·13-s + 40·16-s − 19-s − 20·25-s − 8·28-s − 4·31-s + 11·37-s + 5·43-s + 7·49-s + 16·52-s − 13·61-s − 160·64-s − 11·67-s − 10·73-s + 8·76-s − 13·79-s − 2·91-s + 14·97-s + 160·100-s − 20·103-s − 17·109-s + 40·112-s − 44·121-s + 32·124-s + 127-s + ⋯ |
L(s) = 1 | − 4·4-s + 0.377·7-s − 0.554·13-s + 10·16-s − 0.229·19-s − 4·25-s − 1.51·28-s − 0.718·31-s + 1.80·37-s + 0.762·43-s + 49-s + 2.21·52-s − 1.66·61-s − 20·64-s − 1.34·67-s − 1.17·73-s + 0.917·76-s − 1.46·79-s − 0.209·91-s + 1.42·97-s + 16·100-s − 1.97·103-s − 1.62·109-s + 3.77·112-s − 4·121-s + 2.87·124-s + 0.0887·127-s + ⋯ |
Λ(s)=(=((38⋅298)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((38⋅298)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
38⋅298
|
Sign: |
1
|
Analytic conductor: |
1.33432×107 |
Root analytic conductor: |
7.77423 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 38⋅298, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 29 | | 1 |
good | 2 | C2 | (1+pT2)4 |
| 5 | C2 | (1+pT2)4 |
| 7 | C4×C2 | 1−T−6T2+13T3+29T4+13pT5−6p2T6−p3T7+p4T8 |
| 11 | C2 | (1+pT2)4 |
| 13 | C4×C2 | 1+2T−9T2−44T3+29T4−44pT5−9p2T6+2p3T7+p4T8 |
| 17 | C2 | (1+pT2)4 |
| 19 | C4×C2 | 1+T−18T2−37T3+305T4−37pT5−18p2T6+p3T7+p4T8 |
| 23 | C2 | (1+pT2)4 |
| 31 | C4×C2 | 1+4T−15T2−184T3−271T4−184pT5−15p2T6+4p3T7+p4T8 |
| 37 | C4×C2 | 1−11T+84T2−517T3+2579T4−517pT5+84p2T6−11p3T7+p4T8 |
| 41 | C2 | (1+pT2)4 |
| 43 | C4×C2 | 1−5T−18T2+305T3−751T4+305pT5−18p2T6−5p3T7+p4T8 |
| 47 | C2 | (1+pT2)4 |
| 53 | C2 | (1+pT2)4 |
| 59 | C2 | (1+pT2)4 |
| 61 | C4×C2 | 1+13T+108T2+611T3+1355T4+611pT5+108p2T6+13p3T7+p4T8 |
| 67 | C4×C2 | 1+11T+54T2−143T3−5191T4−143pT5+54p2T6+11p3T7+p4T8 |
| 71 | C2 | (1+pT2)4 |
| 73 | C4×C2 | 1+10T+27T2−460T3−6571T4−460pT5+27p2T6+10p3T7+p4T8 |
| 79 | C4×C2 | 1+13T+90T2+143T3−5251T4+143pT5+90p2T6+13p3T7+p4T8 |
| 83 | C2 | (1+pT2)4 |
| 89 | C2 | (1+pT2)4 |
| 97 | C4×C2 | 1−14T+99T2−28T3−9211T4−28pT5+99p2T6−14p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.80301203246656688854737903269, −5.67591118116113773684498184987, −5.44478910106616633733563200060, −5.34654806383379519053839353412, −5.30432906245248856915194150942, −4.77144654773534155492871763363, −4.69190740101543008274899999648, −4.58560557516145415607200296221, −4.37379820046605395706154618229, −4.22779291434716124932379545367, −4.06444897393581446474919392252, −4.02758453305681070578143329897, −3.92808481731856575411189618124, −3.44127997653737385813060965211, −3.20849347332780585268741605872, −3.19118721596011276153274623370, −3.18458874315738660889833243891, −2.47341979823624841074061692368, −2.41913107615580637458210270704, −2.10436212484739088754172804614, −1.91164743924746212893676156274, −1.39912475947805497258548745717, −1.28486526853184290613784953983, −1.00376856468987677843214071953, −0.932877276837166783780316361544, 0, 0, 0, 0,
0.932877276837166783780316361544, 1.00376856468987677843214071953, 1.28486526853184290613784953983, 1.39912475947805497258548745717, 1.91164743924746212893676156274, 2.10436212484739088754172804614, 2.41913107615580637458210270704, 2.47341979823624841074061692368, 3.18458874315738660889833243891, 3.19118721596011276153274623370, 3.20849347332780585268741605872, 3.44127997653737385813060965211, 3.92808481731856575411189618124, 4.02758453305681070578143329897, 4.06444897393581446474919392252, 4.22779291434716124932379545367, 4.37379820046605395706154618229, 4.58560557516145415607200296221, 4.69190740101543008274899999648, 4.77144654773534155492871763363, 5.30432906245248856915194150942, 5.34654806383379519053839353412, 5.44478910106616633733563200060, 5.67591118116113773684498184987, 5.80301203246656688854737903269