Properties

Label 8-845e4-1.1-c1e4-0-6
Degree $8$
Conductor $509831700625$
Sign $1$
Analytic cond. $2072.69$
Root an. cond. $2.59756$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 3·4-s + 8·5-s − 4·7-s + 2·9-s − 2·11-s + 6·12-s − 16·15-s + 4·16-s + 2·17-s + 10·19-s − 24·20-s + 8·21-s + 6·23-s + 38·25-s + 8·27-s + 12·28-s − 20·31-s + 4·33-s − 32·35-s − 6·36-s − 14·41-s − 2·43-s + 6·44-s + 16·45-s − 24·47-s − 8·48-s + ⋯
L(s)  = 1  − 1.15·3-s − 3/2·4-s + 3.57·5-s − 1.51·7-s + 2/3·9-s − 0.603·11-s + 1.73·12-s − 4.13·15-s + 16-s + 0.485·17-s + 2.29·19-s − 5.36·20-s + 1.74·21-s + 1.25·23-s + 38/5·25-s + 1.53·27-s + 2.26·28-s − 3.59·31-s + 0.696·33-s − 5.40·35-s − 36-s − 2.18·41-s − 0.304·43-s + 0.904·44-s + 2.38·45-s − 3.50·47-s − 1.15·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{4} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(2072.69\)
Root analytic conductor: \(2.59756\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{4} \cdot 13^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.218081022\)
\(L(\frac12)\) \(\approx\) \(1.218081022\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13 \( 1 \)
good2$C_2^3$ \( 1 + 3 T^{2} + 5 T^{4} + 3 p^{2} T^{6} + p^{4} T^{8} \)
3$C_2^3$ \( 1 + 2 T + 2 T^{2} - 8 T^{3} - 17 T^{4} - 8 p T^{5} + 2 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
7$C_2^2$ \( ( 1 + 2 T - 3 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^3$ \( 1 + 2 T + 2 T^{2} - 40 T^{3} - 161 T^{4} - 40 p T^{5} + 2 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
17$C_2^3$ \( 1 - 2 T + 2 T^{2} + 64 T^{3} - 353 T^{4} + 64 p T^{5} + 2 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
19$C_2^3$ \( 1 - 10 T + 50 T^{2} - 120 T^{3} + 239 T^{4} - 120 p T^{5} + 50 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8} \)
23$C_2^3$ \( 1 - 6 T + 18 T^{2} + 168 T^{3} - 1033 T^{4} + 168 p T^{5} + 18 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^3$ \( 1 + 14 T + 98 T^{2} + 224 T^{3} - 113 T^{4} + 224 p T^{5} + 98 p^{2} T^{6} + 14 p^{3} T^{7} + p^{4} T^{8} \)
43$C_2^3$ \( 1 + 2 T + 2 T^{2} - 168 T^{3} - 2017 T^{4} - 168 p T^{5} + 2 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
47$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \)
59$C_2^3$ \( 1 - 14 T + 98 T^{2} + 280 T^{3} - 5441 T^{4} + 280 p T^{5} + 98 p^{2} T^{6} - 14 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2$ \( ( 1 - 13 T + p T^{2} )^{2}( 1 - T + p T^{2} )^{2} \)
67$C_2^3$ \( 1 + 118 T^{2} + 9435 T^{4} + 118 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2^3$ \( 1 - 2 T + 2 T^{2} + 280 T^{3} - 5321 T^{4} + 280 p T^{5} + 2 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
73$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 154 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
89$C_2^3$ \( 1 + 10 T + 50 T^{2} - 1280 T^{3} - 14321 T^{4} - 1280 p T^{5} + 50 p^{2} T^{6} + 10 p^{3} T^{7} + p^{4} T^{8} \)
97$C_2^3$ \( 1 + 190 T^{2} + 26691 T^{4} + 190 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.29592278342521876728442913755, −6.78316521649286718765728522410, −6.67554035218004868578148928744, −6.65072733715552116915886392067, −6.63636174915279763552136641533, −5.83915243806368295595526061331, −5.79590298353089677351657829263, −5.69882536936759048747690989938, −5.44371472571557917579264891623, −5.22899791923221364685780287336, −5.06060529110031734913527218789, −5.00717456959150086359738553808, −4.97547141097405801596249248058, −4.17824407525146083743111337406, −3.96010405808115085474465899347, −3.45951397226406188242245968296, −3.42986486708478238690131639231, −3.18805179587204126384863910430, −2.58920020913594767061340126830, −2.41332692274526104745685199900, −2.35962117803260532487423744584, −1.41289348664036284252441248091, −1.33048370382117695537351313446, −1.16369892729371021552019497675, −0.32011960718549032532015633729, 0.32011960718549032532015633729, 1.16369892729371021552019497675, 1.33048370382117695537351313446, 1.41289348664036284252441248091, 2.35962117803260532487423744584, 2.41332692274526104745685199900, 2.58920020913594767061340126830, 3.18805179587204126384863910430, 3.42986486708478238690131639231, 3.45951397226406188242245968296, 3.96010405808115085474465899347, 4.17824407525146083743111337406, 4.97547141097405801596249248058, 5.00717456959150086359738553808, 5.06060529110031734913527218789, 5.22899791923221364685780287336, 5.44371472571557917579264891623, 5.69882536936759048747690989938, 5.79590298353089677351657829263, 5.83915243806368295595526061331, 6.63636174915279763552136641533, 6.65072733715552116915886392067, 6.67554035218004868578148928744, 6.78316521649286718765728522410, 7.29592278342521876728442913755

Graph of the $Z$-function along the critical line