L(s) = 1 | − 2·3-s − 3·4-s + 8·5-s − 4·7-s + 2·9-s − 2·11-s + 6·12-s − 16·15-s + 4·16-s + 2·17-s + 10·19-s − 24·20-s + 8·21-s + 6·23-s + 38·25-s + 8·27-s + 12·28-s − 20·31-s + 4·33-s − 32·35-s − 6·36-s − 14·41-s − 2·43-s + 6·44-s + 16·45-s − 24·47-s − 8·48-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 3/2·4-s + 3.57·5-s − 1.51·7-s + 2/3·9-s − 0.603·11-s + 1.73·12-s − 4.13·15-s + 16-s + 0.485·17-s + 2.29·19-s − 5.36·20-s + 1.74·21-s + 1.25·23-s + 38/5·25-s + 1.53·27-s + 2.26·28-s − 3.59·31-s + 0.696·33-s − 5.40·35-s − 36-s − 2.18·41-s − 0.304·43-s + 0.904·44-s + 2.38·45-s − 3.50·47-s − 1.15·48-s + ⋯ |
Λ(s)=(=((54⋅138)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((54⋅138)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
54⋅138
|
Sign: |
1
|
Analytic conductor: |
2072.69 |
Root analytic conductor: |
2.59756 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 54⋅138, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.218081022 |
L(21) |
≈ |
1.218081022 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | C2 | (1−4T+pT2)2 |
| 13 | | 1 |
good | 2 | C23 | 1+3T2+5T4+3p2T6+p4T8 |
| 3 | C23 | 1+2T+2T2−8T3−17T4−8pT5+2p2T6+2p3T7+p4T8 |
| 7 | C22 | (1+2T−3T2+2pT3+p2T4)2 |
| 11 | C23 | 1+2T+2T2−40T3−161T4−40pT5+2p2T6+2p3T7+p4T8 |
| 17 | C23 | 1−2T+2T2+64T3−353T4+64pT5+2p2T6−2p3T7+p4T8 |
| 19 | C23 | 1−10T+50T2−120T3+239T4−120pT5+50p2T6−10p3T7+p4T8 |
| 23 | C23 | 1−6T+18T2+168T3−1033T4+168pT5+18p2T6−6p3T7+p4T8 |
| 29 | C22 | (1+pT2+p2T4)2 |
| 31 | C22 | (1+10T+50T2+10pT3+p2T4)2 |
| 37 | C22 | (1−pT2+p2T4)2 |
| 41 | C23 | 1+14T+98T2+224T3−113T4+224pT5+98p2T6+14p3T7+p4T8 |
| 43 | C23 | 1+2T+2T2−168T3−2017T4−168pT5+2p2T6+2p3T7+p4T8 |
| 47 | C2 | (1+6T+pT2)4 |
| 53 | C2 | (1−14T+pT2)2(1+4T+pT2)2 |
| 59 | C23 | 1−14T+98T2+280T3−5441T4+280pT5+98p2T6−14p3T7+p4T8 |
| 61 | C2 | (1−13T+pT2)2(1−T+pT2)2 |
| 67 | C23 | 1+118T2+9435T4+118p2T6+p4T8 |
| 71 | C23 | 1−2T+2T2+280T3−5321T4+280pT5+2p2T6−2p3T7+p4T8 |
| 73 | C22 | (1−46T2+p2T4)2 |
| 79 | C22 | (1−154T2+p2T4)2 |
| 83 | C2 | (1+6T+pT2)4 |
| 89 | C23 | 1+10T+50T2−1280T3−14321T4−1280pT5+50p2T6+10p3T7+p4T8 |
| 97 | C23 | 1+190T2+26691T4+190p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.29592278342521876728442913755, −6.78316521649286718765728522410, −6.67554035218004868578148928744, −6.65072733715552116915886392067, −6.63636174915279763552136641533, −5.83915243806368295595526061331, −5.79590298353089677351657829263, −5.69882536936759048747690989938, −5.44371472571557917579264891623, −5.22899791923221364685780287336, −5.06060529110031734913527218789, −5.00717456959150086359738553808, −4.97547141097405801596249248058, −4.17824407525146083743111337406, −3.96010405808115085474465899347, −3.45951397226406188242245968296, −3.42986486708478238690131639231, −3.18805179587204126384863910430, −2.58920020913594767061340126830, −2.41332692274526104745685199900, −2.35962117803260532487423744584, −1.41289348664036284252441248091, −1.33048370382117695537351313446, −1.16369892729371021552019497675, −0.32011960718549032532015633729,
0.32011960718549032532015633729, 1.16369892729371021552019497675, 1.33048370382117695537351313446, 1.41289348664036284252441248091, 2.35962117803260532487423744584, 2.41332692274526104745685199900, 2.58920020913594767061340126830, 3.18805179587204126384863910430, 3.42986486708478238690131639231, 3.45951397226406188242245968296, 3.96010405808115085474465899347, 4.17824407525146083743111337406, 4.97547141097405801596249248058, 5.00717456959150086359738553808, 5.06060529110031734913527218789, 5.22899791923221364685780287336, 5.44371472571557917579264891623, 5.69882536936759048747690989938, 5.79590298353089677351657829263, 5.83915243806368295595526061331, 6.63636174915279763552136641533, 6.65072733715552116915886392067, 6.67554035218004868578148928744, 6.78316521649286718765728522410, 7.29592278342521876728442913755