L(s) = 1 | + 10·9-s − 4·11-s − 8·13-s + 8·19-s + 16·23-s − 8·29-s + 8·31-s + 8·37-s + 8·41-s + 20·43-s − 8·47-s + 16·59-s − 8·61-s + 4·67-s − 24·73-s + 57·81-s − 36·83-s − 24·89-s − 28·97-s − 40·99-s + 8·103-s + 24·109-s + 64·113-s − 80·117-s + 8·121-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 10/3·9-s − 1.20·11-s − 2.21·13-s + 1.83·19-s + 3.33·23-s − 1.48·29-s + 1.43·31-s + 1.31·37-s + 1.24·41-s + 3.04·43-s − 1.16·47-s + 2.08·59-s − 1.02·61-s + 0.488·67-s − 2.80·73-s + 19/3·81-s − 3.95·83-s − 2.54·89-s − 2.84·97-s − 4.02·99-s + 0.788·103-s + 2.29·109-s + 6.02·113-s − 7.39·117-s + 8/11·121-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
Λ(s)=(=((224⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((224⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅134
|
Sign: |
1
|
Analytic conductor: |
1948.05 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.765897760 |
L(21) |
≈ |
4.765897760 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C22 | 1+8T+32T2+8pT3+p2T4 |
good | 3 | C22 | (1−5T2+p2T4)2 |
| 5 | C23 | 1−p2T4+p4T8 |
| 7 | C23 | 1−17T4+p4T8 |
| 11 | C2×C22 | (1+2T+pT2)2(1−18T2+p2T4) |
| 17 | D4×C2 | 1+14T2+467T4+14p2T6+p4T8 |
| 19 | D4×C2 | 1−8T+32T2−56T3−46T4−56pT5+32p2T6−8p3T7+p4T8 |
| 23 | D4 | (1−8T+52T2−8pT3+p2T4)2 |
| 29 | D4 | (1+4T+52T2+4pT3+p2T4)2 |
| 31 | D4×C2 | 1−8T+32T2−152T3+578T4−152pT5+32p2T6−8p3T7+p4T8 |
| 37 | D4×C2 | 1−8T+32T2−320T3+3191T4−320pT5+32p2T6−8p3T7+p4T8 |
| 41 | D4×C2 | 1−8T+32T2−232T3+1538T4−232pT5+32p2T6−8p3T7+p4T8 |
| 43 | C2 | (1−5T+pT2)4 |
| 47 | D4×C2 | 1+8T+32T2+80T3−1169T4+80pT5+32p2T6+8p3T7+p4T8 |
| 53 | C22 | (1+16T2+p2T4)2 |
| 59 | C22 | (1−8T+32T2−8pT3+p2T4)2 |
| 61 | C2 | (1+2T+pT2)4 |
| 67 | D4×C2 | 1−4T+8T2+44T3−5842T4+44pT5+8p2T6−4p3T7+p4T8 |
| 71 | C23 | 1+8687T4+p4T8 |
| 73 | C22 | (1+12T+72T2+12pT3+p2T4)2 |
| 79 | D4×C2 | 1−64T2+546T4−64p2T6+p4T8 |
| 83 | D4×C2 | 1+36T+648T2+8100T3+81086T4+8100pT5+648p2T6+36p3T7+p4T8 |
| 89 | D4×C2 | 1+24T+288T2+3384T3+37058T4+3384pT5+288p2T6+24p3T7+p4T8 |
| 97 | D4×C2 | 1+28T+392T2+4900T3+55166T4+4900pT5+392p2T6+28p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.24540711618315172626731583655, −7.18484291236185538987941836353, −7.02944431273268137596511653471, −6.93240619363106360047198192706, −6.76154769000676520323967908010, −5.89047693530968064178407972419, −5.78345553161091382466960814130, −5.76902237208018730887263107122, −5.68060530352411107430625892539, −5.01078488177627523989330790361, −4.79003191676737789047365590490, −4.70277011583786354655669338397, −4.56942151507851981626280540177, −4.41091918660200354684190613793, −4.06520034774877815047634847791, −3.76852924375064055021378055185, −3.11570543813214050581105733495, −3.10680322312971677808089268105, −2.86741804465341959484589053762, −2.46213595532823798708603104831, −2.22953969707436585094543426499, −1.76108011685486823386403432172, −1.17888513327873646033439619151, −1.10959431488628920150437446405, −0.63920390808653339447135156787,
0.63920390808653339447135156787, 1.10959431488628920150437446405, 1.17888513327873646033439619151, 1.76108011685486823386403432172, 2.22953969707436585094543426499, 2.46213595532823798708603104831, 2.86741804465341959484589053762, 3.10680322312971677808089268105, 3.11570543813214050581105733495, 3.76852924375064055021378055185, 4.06520034774877815047634847791, 4.41091918660200354684190613793, 4.56942151507851981626280540177, 4.70277011583786354655669338397, 4.79003191676737789047365590490, 5.01078488177627523989330790361, 5.68060530352411107430625892539, 5.76902237208018730887263107122, 5.78345553161091382466960814130, 5.89047693530968064178407972419, 6.76154769000676520323967908010, 6.93240619363106360047198192706, 7.02944431273268137596511653471, 7.18484291236185538987941836353, 7.24540711618315172626731583655