Properties

Label 8-725e4-1.1-c1e4-0-2
Degree $8$
Conductor $276281640625$
Sign $1$
Analytic cond. $1123.20$
Root an. cond. $2.40606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s − 2·9-s − 5·16-s + 12·29-s − 4·36-s + 20·49-s − 24·59-s − 20·64-s − 15·81-s − 20·109-s + 24·116-s + 34·121-s + 127-s + 131-s + 137-s + 139-s + 10·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 50·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  + 4-s − 2/3·9-s − 5/4·16-s + 2.22·29-s − 2/3·36-s + 20/7·49-s − 3.12·59-s − 5/2·64-s − 5/3·81-s − 1.91·109-s + 2.22·116-s + 3.09·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5/6·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.84·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 29^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 29^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{8} \cdot 29^{4}\)
Sign: $1$
Analytic conductor: \(1123.20\)
Root analytic conductor: \(2.40606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{8} \cdot 29^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.832240217\)
\(L(\frac12)\) \(\approx\) \(1.832240217\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
good2$C_2^2$ \( ( 1 - T^{2} + p^{2} T^{4} )^{2} \)
3$C_2^2$ \( ( 1 + T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 17 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 25 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 17 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + p T^{2} )^{4} \)
41$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
43$C_2^2$ \( ( 1 + 41 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 89 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 25 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
67$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2$ \( ( 1 + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 113 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 158 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.51142627490353454858613080239, −7.22715189671199119391494709357, −6.91043872904680642404314832304, −6.76354037176925662676899740126, −6.60171800811418718193766658615, −6.48774372460547012649762794703, −5.90596707384285186231098178335, −5.88932420505269698424430521665, −5.73015874903168392778394292830, −5.57191954976078894604280606031, −4.90555867537011437763193333636, −4.73284474494995545118946160614, −4.58721714779760185124417103057, −4.54786764157570828730816389595, −3.89509090474010465262003198840, −3.88801436995242210653300818263, −3.35057658828239524947505774145, −3.00849050210456249869652686545, −2.83200533514661363503352640209, −2.56550750020201812081216460476, −2.28259647281828210122337385569, −2.01216404094787750783470506256, −1.40048204825684997757517577898, −1.16230939407100343270898103503, −0.35549355000695624129134292350, 0.35549355000695624129134292350, 1.16230939407100343270898103503, 1.40048204825684997757517577898, 2.01216404094787750783470506256, 2.28259647281828210122337385569, 2.56550750020201812081216460476, 2.83200533514661363503352640209, 3.00849050210456249869652686545, 3.35057658828239524947505774145, 3.88801436995242210653300818263, 3.89509090474010465262003198840, 4.54786764157570828730816389595, 4.58721714779760185124417103057, 4.73284474494995545118946160614, 4.90555867537011437763193333636, 5.57191954976078894604280606031, 5.73015874903168392778394292830, 5.88932420505269698424430521665, 5.90596707384285186231098178335, 6.48774372460547012649762794703, 6.60171800811418718193766658615, 6.76354037176925662676899740126, 6.91043872904680642404314832304, 7.22715189671199119391494709357, 7.51142627490353454858613080239

Graph of the $Z$-function along the critical line