L(s) = 1 | + 4·2-s + 3·4-s + 18·5-s − 28·7-s + 72·10-s − 44·11-s − 134·13-s − 112·14-s − 25·16-s + 74·17-s − 164·19-s + 54·20-s − 176·22-s − 194·23-s − 69·25-s − 536·26-s − 84·28-s + 108·29-s − 412·31-s − 244·32-s + 296·34-s − 504·35-s + 286·37-s − 656·38-s + 18·41-s − 496·43-s − 132·44-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/8·4-s + 1.60·5-s − 1.51·7-s + 2.27·10-s − 1.20·11-s − 2.85·13-s − 2.13·14-s − 0.390·16-s + 1.05·17-s − 1.98·19-s + 0.603·20-s − 1.70·22-s − 1.75·23-s − 0.551·25-s − 4.04·26-s − 0.566·28-s + 0.691·29-s − 2.38·31-s − 1.34·32-s + 1.49·34-s − 2.43·35-s + 1.27·37-s − 2.80·38-s + 0.0685·41-s − 1.75·43-s − 0.452·44-s + ⋯ |
Λ(s)=(=((38⋅74⋅114)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((38⋅74⋅114)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
38⋅74⋅114
|
Sign: |
1
|
Analytic conductor: |
2.79509×106 |
Root analytic conductor: |
6.39439 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 38⋅74⋅114, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 7 | C1 | (1+pT)4 |
| 11 | C1 | (1+pT)4 |
good | 2 | C2≀S4 | 1−p2T+13T2−5p3T3+73pT4−5p6T5+13p6T6−p11T7+p12T8 |
| 5 | C2≀S4 | 1−18T+393T2−758pT3+56148T4−758p4T5+393p6T6−18p9T7+p12T8 |
| 13 | C2≀S4 | 1+134T+10520T2+559034T3+26667070T4+559034p3T5+10520p6T6+134p9T7+p12T8 |
| 17 | C2≀S4 | 1−74T+17468T2−831750T3+118657126T4−831750p3T5+17468p6T6−74p9T7+p12T8 |
| 19 | C2≀S4 | 1+164T+11968T2+138820T3−15467058T4+138820p3T5+11968p6T6+164p9T7+p12T8 |
| 23 | C2≀S4 | 1+194T+46053T2+5374478T3+784861428T4+5374478p3T5+46053p6T6+194p9T7+p12T8 |
| 29 | C2≀S4 | 1−108T+42724T2+1514908T3+528463590T4+1514908p3T5+42724p6T6−108p9T7+p12T8 |
| 31 | C2≀S4 | 1+412T+51613T2−11046366T3−3907770320T4−11046366p3T5+51613p6T6+412p9T7+p12T8 |
| 37 | C2≀S4 | 1−286T+135513T2−31935490T3+9691467156T4−31935490p3T5+135513p6T6−286p9T7+p12T8 |
| 41 | C2≀S4 | 1−18T+114524T2+18203666T3+5875037446T4+18203666p3T5+114524p6T6−18p9T7+p12T8 |
| 43 | C2≀S4 | 1+496T+308268T2+103155312T3+35378135478T4+103155312p3T5+308268p6T6+496p9T7+p12T8 |
| 47 | C2≀S4 | 1+62T+345832T2+21522086T3+50715680878T4+21522086p3T5+345832p6T6+62p9T7+p12T8 |
| 53 | C2≀S4 | 1−828T+705892T2−360136820T3+165458948486T4−360136820p3T5+705892p6T6−828p9T7+p12T8 |
| 59 | C2≀S4 | 1−1224T+1275413T2−804281630T3+441199752912T4−804281630p3T5+1275413p6T6−1224p9T7+p12T8 |
| 61 | C2≀S4 | 1+350T+430588T2+138974618T3+88699741846T4+138974618p3T5+430588p6T6+350p9T7+p12T8 |
| 67 | C2≀S4 | 1+1498T+1714917T2+1237137334T3+793168291468T4+1237137334p3T5+1714917p6T6+1498p9T7+p12T8 |
| 71 | C2≀S4 | 1+2326T+3445789T2+3267789594T3+2320231641060T4+3267789594p3T5+3445789p6T6+2326p9T7+p12T8 |
| 73 | C2≀S4 | 1+1630T+2286292T2+1913055042T3+1441611662422T4+1913055042p3T5+2286292p6T6+1630p9T7+p12T8 |
| 79 | C2≀S4 | 1+1020T+1989936T2+1295128300T3+1427479601566T4+1295128300p3T5+1989936p6T6+1020p9T7+p12T8 |
| 83 | C2≀S4 | 1−1920T+2662892T2−2752584832T3+2433754978902T4−2752584832p3T5+2662892p6T6−1920p9T7+p12T8 |
| 89 | C2≀S4 | 1+1550T+1862281T2+874387910T3+705085008356T4+874387910p3T5+1862281p6T6+1550p9T7+p12T8 |
| 97 | C2≀S4 | 1+2202T+5018625T2+6116849198T3+7416588769820T4+6116849198p3T5+5018625p6T6+2202p9T7+p12T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.43908560853462589685585361744, −7.42069251850984945151730663946, −7.02836232436908219879105323332, −6.88384612999257518466981169394, −6.48999357559035646455439210864, −6.25607465360071010486670127776, −5.97908099531001712952082097493, −5.83209613863528777573237939348, −5.72566311713299537455326859646, −5.37709473805517550820976300062, −5.27849320457487709593338216840, −4.96037070827037694424298004050, −4.77636070803062740776977182768, −4.26722120098286793240652316473, −4.17270610490476072193330805663, −4.01275152710589195220119942013, −3.89631367850701075533333192742, −3.20097051193696083071281728439, −2.89011072785254005961638972133, −2.87829508660891421682969294003, −2.27790683984819339740675165412, −2.23792866836422627527643145512, −2.16301159074055280804543063375, −1.48526244251488619030461131691, −1.34468543103861334978274148012, 0, 0, 0, 0,
1.34468543103861334978274148012, 1.48526244251488619030461131691, 2.16301159074055280804543063375, 2.23792866836422627527643145512, 2.27790683984819339740675165412, 2.87829508660891421682969294003, 2.89011072785254005961638972133, 3.20097051193696083071281728439, 3.89631367850701075533333192742, 4.01275152710589195220119942013, 4.17270610490476072193330805663, 4.26722120098286793240652316473, 4.77636070803062740776977182768, 4.96037070827037694424298004050, 5.27849320457487709593338216840, 5.37709473805517550820976300062, 5.72566311713299537455326859646, 5.83209613863528777573237939348, 5.97908099531001712952082097493, 6.25607465360071010486670127776, 6.48999357559035646455439210864, 6.88384612999257518466981169394, 7.02836232436908219879105323332, 7.42069251850984945151730663946, 7.43908560853462589685585361744