L(s) = 1 | − 32·4-s + 592·9-s − 72·11-s + 768·16-s + 2.18e3·19-s + 9.74e3·29-s − 4.52e3·31-s − 1.89e4·36-s − 1.84e4·41-s + 2.30e3·44-s + 2.42e4·49-s − 1.80e5·59-s − 1.38e5·61-s − 1.63e4·64-s − 5.73e4·71-s − 6.98e4·76-s − 1.68e5·79-s + 1.77e5·81-s − 1.85e5·89-s − 4.26e4·99-s + 7.78e3·101-s − 4.82e3·109-s − 3.11e5·116-s − 1.15e5·121-s + 1.44e5·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 4-s + 2.43·9-s − 0.179·11-s + 3/4·16-s + 1.38·19-s + 2.15·29-s − 0.844·31-s − 2.43·36-s − 1.71·41-s + 0.179·44-s + 1.44·49-s − 6.76·59-s − 4.74·61-s − 1/2·64-s − 1.34·71-s − 1.38·76-s − 3.03·79-s + 2.99·81-s − 2.47·89-s − 0.437·99-s + 0.0759·101-s − 0.0388·109-s − 2.15·116-s − 0.716·121-s + 0.844·124-s + 5.50e−6·127-s + 5.09e−6·131-s + ⋯ |
Λ(s)=(=((24⋅58⋅134)s/2ΓC(s)4L(s)Λ(6−s)
Λ(s)=(=((24⋅58⋅134)s/2ΓC(s+5/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅58⋅134
|
Sign: |
1
|
Analytic conductor: |
1.18112×108 |
Root analytic conductor: |
10.2102 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅58⋅134, ( :5/2,5/2,5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
0.9357429105 |
L(21) |
≈ |
0.9357429105 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | (1+p4T2)2 |
| 5 | | 1 |
| 13 | C2 | (1+p4T2)2 |
good | 3 | D4×C2 | 1−592T2+173458T4−592p10T6+p20T8 |
| 7 | D4×C2 | 1−3468pT2+7278758p2T4−3468p11T6+p20T8 |
| 11 | D4 | (1+36T+59660T2+36p5T3+p10T4)2 |
| 17 | D4×C2 | 1−86540T2−3784960459802T4−86540p10T6+p20T8 |
| 19 | D4 | (1−1092T+5226780T2−1092p5T3+p10T4)2 |
| 23 | D4×C2 | 1−4296896T2+73115643117858T4−4296896p10T6+p20T8 |
| 29 | D4 | (1−168pT+24870890T2−168p6T3+p10T4)2 |
| 31 | D4 | (1+2260T−4802604T2+2260p5T3+p10T4)2 |
| 37 | D4×C2 | 1−81075300T2+5174214699551798T4−81075300p10T6+p20T8 |
| 41 | D4 | (1+9220T+191811102T2+9220p5T3+p10T4)2 |
| 43 | D4×C2 | 1−307121776T2+66493657362749938T4−307121776p10T6+p20T8 |
| 47 | D4×C2 | 1−818687220T2+271437169988573798T4−818687220p10T6+p20T8 |
| 53 | D4×C2 | 1−1603427228T2+992023260615384310T4−1603427228p10T6+p20T8 |
| 59 | D4 | (1+90404T+3449372988T2+90404p5T3+p10T4)2 |
| 61 | D4 | (1+69000T+2784511178T2+69000p5T3+p10T4)2 |
| 67 | D4×C2 | 1−3438652308T2+5735146176860862518T4−3438652308p10T6+p20T8 |
| 71 | D4 | (1+28668T+3332675492T2+28668p5T3+p10T4)2 |
| 73 | D4×C2 | 1−6138404788T2+17643912066464393670T4−6138404788p10T6+p20T8 |
| 79 | D4 | (1+84064T+4137892006T2+84064p5T3+p10T4)2 |
| 83 | D4×C2 | 1−4727788228T2+35719446237480418710T4−4727788228p10T6+p20T8 |
| 89 | D4 | (1+92620T+13143968022T2+92620p5T3+p10T4)2 |
| 97 | D4×C2 | 1−28945542972T2+34⋯10T4−28945542972p10T6+p20T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.98757781218594973133115870854, −6.47624647882894459242544956580, −6.32225895189913788447326419851, −6.13172444207821644923400486541, −5.77644640849140991196864230450, −5.69599434135675158464679069133, −5.27502655931792704818662700044, −4.91076561495714424923936568113, −4.68940879937535060625406298549, −4.66197663612106823366654314072, −4.31966823979743706088062782619, −4.30542046913951442647374910370, −4.02481829338212262406214068930, −3.32659167346692373838370124474, −3.27596891446237640375953424171, −3.17746977429690549705256963460, −2.85084614691639572370735438477, −2.47354201959764268132148851212, −1.93858970345071507794288773128, −1.45490348744143616148447274799, −1.33035435032325176047832885419, −1.28978000147736598621030073539, −1.22022309103391759501140567243, −0.27551089067402655469312379277, −0.17792521344228198541589631241,
0.17792521344228198541589631241, 0.27551089067402655469312379277, 1.22022309103391759501140567243, 1.28978000147736598621030073539, 1.33035435032325176047832885419, 1.45490348744143616148447274799, 1.93858970345071507794288773128, 2.47354201959764268132148851212, 2.85084614691639572370735438477, 3.17746977429690549705256963460, 3.27596891446237640375953424171, 3.32659167346692373838370124474, 4.02481829338212262406214068930, 4.30542046913951442647374910370, 4.31966823979743706088062782619, 4.66197663612106823366654314072, 4.68940879937535060625406298549, 4.91076561495714424923936568113, 5.27502655931792704818662700044, 5.69599434135675158464679069133, 5.77644640849140991196864230450, 6.13172444207821644923400486541, 6.32225895189913788447326419851, 6.47624647882894459242544956580, 6.98757781218594973133115870854