Properties

Label 8-650e4-1.1-c2e4-0-1
Degree $8$
Conductor $178506250000$
Sign $1$
Analytic cond. $98399.6$
Root an. cond. $4.20846$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 8·3-s + 8·4-s − 32·6-s − 12·7-s − 8·8-s + 16·9-s + 4·11-s + 64·12-s + 48·14-s − 4·16-s − 64·18-s + 24·19-s − 96·21-s − 16·22-s − 64·24-s − 56·27-s − 96·28-s + 76·29-s + 60·31-s + 32·32-s + 32·33-s + 128·36-s + 68·37-s − 96·38-s + 64·41-s + 384·42-s + ⋯
L(s)  = 1  − 2·2-s + 8/3·3-s + 2·4-s − 5.33·6-s − 1.71·7-s − 8-s + 16/9·9-s + 4/11·11-s + 16/3·12-s + 24/7·14-s − 1/4·16-s − 3.55·18-s + 1.26·19-s − 4.57·21-s − 0.727·22-s − 8/3·24-s − 2.07·27-s − 3.42·28-s + 2.62·29-s + 1.93·31-s + 32-s + 0.969·33-s + 32/9·36-s + 1.83·37-s − 2.52·38-s + 1.56·41-s + 64/7·42-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(98399.6\)
Root analytic conductor: \(4.20846\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 5^{8} \cdot 13^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(3.369660550\)
\(L(\frac12)\) \(\approx\) \(3.369660550\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p T + p T^{2} )^{2} \)
5 \( 1 \)
13$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
good3$D_{4}$ \( ( 1 - 4 T + 16 T^{2} - 4 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 + 12 T + 72 T^{2} + 480 T^{3} + 3119 T^{4} + 480 p^{2} T^{5} + 72 p^{4} T^{6} + 12 p^{6} T^{7} + p^{8} T^{8} \)
11$D_4\times C_2$ \( 1 - 4 T + 8 T^{2} + 480 T^{3} - 29281 T^{4} + 480 p^{2} T^{5} + 8 p^{4} T^{6} - 4 p^{6} T^{7} + p^{8} T^{8} \)
17$D_4\times C_2$ \( 1 - 706 T^{2} + 283875 T^{4} - 706 p^{4} T^{6} + p^{8} T^{8} \)
19$C_2^2$ \( ( 1 - 12 T + 72 T^{2} - 12 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 656 T^{2} + 521250 T^{4} - 656 p^{4} T^{6} + p^{8} T^{8} \)
29$D_{4}$ \( ( 1 - 38 T + 1179 T^{2} - 38 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 60 T + 1800 T^{2} - 83040 T^{3} + 3651983 T^{4} - 83040 p^{2} T^{5} + 1800 p^{4} T^{6} - 60 p^{6} T^{7} + p^{8} T^{8} \)
37$D_4\times C_2$ \( 1 - 68 T + 2312 T^{2} - 103020 T^{3} + 4569134 T^{4} - 103020 p^{2} T^{5} + 2312 p^{4} T^{6} - 68 p^{6} T^{7} + p^{8} T^{8} \)
41$D_4\times C_2$ \( 1 - 64 T + 2048 T^{2} - 29760 T^{3} - 1046206 T^{4} - 29760 p^{2} T^{5} + 2048 p^{4} T^{6} - 64 p^{6} T^{7} + p^{8} T^{8} \)
43$D_4\times C_2$ \( 1 - 3536 T^{2} + 7156290 T^{4} - 3536 p^{4} T^{6} + p^{8} T^{8} \)
47$D_4\times C_2$ \( 1 - 12 T + 72 T^{2} + 66912 T^{3} + 1577327 T^{4} + 66912 p^{2} T^{5} + 72 p^{4} T^{6} - 12 p^{6} T^{7} + p^{8} T^{8} \)
53$D_{4}$ \( ( 1 - 130 T + 9627 T^{2} - 130 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 52 T + 1352 T^{2} - 28704 T^{3} - 7969633 T^{4} - 28704 p^{2} T^{5} + 1352 p^{4} T^{6} - 52 p^{6} T^{7} + p^{8} T^{8} \)
61$D_{4}$ \( ( 1 + 50 T + 6123 T^{2} + 50 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 44 T + 968 T^{2} - 7392 T^{3} - 18614593 T^{4} - 7392 p^{2} T^{5} + 968 p^{4} T^{6} - 44 p^{6} T^{7} + p^{8} T^{8} \)
71$D_4\times C_2$ \( 1 - 56 T + 1568 T^{2} + 82824 T^{3} - 38135518 T^{4} + 82824 p^{2} T^{5} + 1568 p^{4} T^{6} - 56 p^{6} T^{7} + p^{8} T^{8} \)
73$D_4\times C_2$ \( 1 - 36 T + 648 T^{2} + 51156 T^{3} - 41524018 T^{4} + 51156 p^{2} T^{5} + 648 p^{4} T^{6} - 36 p^{6} T^{7} + p^{8} T^{8} \)
79$D_{4}$ \( ( 1 + 32 T + 9282 T^{2} + 32 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 140 T + 9800 T^{2} - 850080 T^{3} + 73070879 T^{4} - 850080 p^{2} T^{5} + 9800 p^{4} T^{6} - 140 p^{6} T^{7} + p^{8} T^{8} \)
89$D_4\times C_2$ \( 1 - 84 T + 3528 T^{2} - 703164 T^{3} + 139944782 T^{4} - 703164 p^{2} T^{5} + 3528 p^{4} T^{6} - 84 p^{6} T^{7} + p^{8} T^{8} \)
97$D_4\times C_2$ \( 1 + 128 T + 8192 T^{2} + 1245312 T^{3} + 189204482 T^{4} + 1245312 p^{2} T^{5} + 8192 p^{4} T^{6} + 128 p^{6} T^{7} + p^{8} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81197095110562372757576484235, −7.27152519524731824078023587661, −6.96360495589784971016362869947, −6.89958857788135326461171161697, −6.60051061002178159112726842337, −6.38165681743021923668050946598, −6.17098340961632319326297954163, −5.72488741840994912485505582894, −5.69393507973294220170367814025, −5.28317085063561384055071703613, −4.83106263903589045031246530529, −4.68231494132880537791801483997, −3.98032138486542581456516078824, −3.89750308855399098014692962347, −3.89676859123201423275823220495, −3.41336365950101708746110089076, −2.86093280876958647625930752539, −2.74721111229795710243519719486, −2.66134003832203711050747751742, −2.54405498473811401529857515840, −2.33867477214843341466125954638, −1.48672494519905420276215315122, −1.02837584295240086607803036902, −0.806427281464001714615918895965, −0.46187142096878385648108729951, 0.46187142096878385648108729951, 0.806427281464001714615918895965, 1.02837584295240086607803036902, 1.48672494519905420276215315122, 2.33867477214843341466125954638, 2.54405498473811401529857515840, 2.66134003832203711050747751742, 2.74721111229795710243519719486, 2.86093280876958647625930752539, 3.41336365950101708746110089076, 3.89676859123201423275823220495, 3.89750308855399098014692962347, 3.98032138486542581456516078824, 4.68231494132880537791801483997, 4.83106263903589045031246530529, 5.28317085063561384055071703613, 5.69393507973294220170367814025, 5.72488741840994912485505582894, 6.17098340961632319326297954163, 6.38165681743021923668050946598, 6.60051061002178159112726842337, 6.89958857788135326461171161697, 6.96360495589784971016362869947, 7.27152519524731824078023587661, 7.81197095110562372757576484235

Graph of the $Z$-function along the critical line