Properties

Label 8-5e8-1.1-c37e4-0-0
Degree $8$
Conductor $390625$
Sign $1$
Analytic cond. $2.20860\times 10^{9}$
Root an. cond. $14.7236$
Motivic weight $37$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.37e11·4-s + 1.79e18·9-s − 5.34e19·11-s + 9.95e21·16-s − 7.46e23·19-s + 2.54e27·29-s + 5.22e26·31-s + 4.26e29·36-s − 2.52e30·41-s − 1.26e31·44-s + 4.09e31·49-s + 4.75e32·59-s + 2.03e32·61-s − 4.13e33·64-s − 1.49e33·71-s − 1.77e35·76-s − 5.44e35·79-s + 2.02e36·81-s + 2.66e36·89-s − 9.62e37·99-s − 3.66e35·101-s − 5.89e37·109-s + 6.02e38·116-s + 7.30e38·121-s + 1.23e38·124-s + 127-s + 131-s + ⋯
L(s)  = 1  + 1.72·4-s + 3.99·9-s − 2.89·11-s + 0.526·16-s − 1.64·19-s + 2.24·29-s + 0.134·31-s + 6.89·36-s − 3.67·41-s − 5.00·44-s + 2.20·49-s + 0.825·59-s + 0.190·61-s − 1.59·64-s − 0.0842·71-s − 2.83·76-s − 4.26·79-s + 9.97·81-s + 2.30·89-s − 11.5·99-s − 0.0305·101-s − 1.19·109-s + 3.86·116-s + 2.14·121-s + 0.231·124-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 390625 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(38-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390625 ^{s/2} \, \Gamma_{\C}(s+37/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(390625\)    =    \(5^{8}\)
Sign: $1$
Analytic conductor: \(2.20860\times 10^{9}\)
Root analytic conductor: \(14.7236\)
Motivic weight: \(37\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 390625,\ (\ :37/2, 37/2, 37/2, 37/2),\ 1)\)

Particular Values

\(L(19)\) \(\approx\) \(3.786308496\)
\(L(\frac12)\) \(\approx\) \(3.786308496\)
\(L(\frac{39}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
good2$D_4\times C_2$ \( 1 - 231599255 p^{10} T^{2} + 689777131079337 p^{26} T^{4} - 231599255 p^{84} T^{6} + p^{148} T^{8} \)
3$D_4\times C_2$ \( 1 - 2468470768427660 p^{6} T^{2} + \)\(34\!\cdots\!38\)\( p^{20} T^{4} - 2468470768427660 p^{80} T^{6} + p^{148} T^{8} \)
7$D_4\times C_2$ \( 1 - \)\(17\!\cdots\!00\)\( p^{4} T^{2} + \)\(33\!\cdots\!02\)\( p^{10} T^{4} - \)\(17\!\cdots\!00\)\( p^{78} T^{6} + p^{148} T^{8} \)
11$D_{4}$ \( ( 1 + 2430366941349867096 p T + \)\(53\!\cdots\!46\)\( p^{3} T^{2} + 2430366941349867096 p^{38} T^{3} + p^{74} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - \)\(21\!\cdots\!20\)\( p^{2} T^{2} + \)\(13\!\cdots\!42\)\( p^{6} T^{4} - \)\(21\!\cdots\!20\)\( p^{76} T^{6} + p^{148} T^{8} \)
17$D_4\times C_2$ \( 1 - \)\(32\!\cdots\!40\)\( p^{2} T^{2} + \)\(17\!\cdots\!82\)\( p^{6} T^{4} - \)\(32\!\cdots\!40\)\( p^{76} T^{6} + p^{148} T^{8} \)
19$D_{4}$ \( ( 1 + \)\(37\!\cdots\!20\)\( T + \)\(10\!\cdots\!62\)\( p T^{2} + \)\(37\!\cdots\!20\)\( p^{37} T^{3} + p^{74} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - \)\(28\!\cdots\!20\)\( T^{2} + \)\(38\!\cdots\!42\)\( p^{2} T^{4} - \)\(28\!\cdots\!20\)\( p^{74} T^{6} + p^{148} T^{8} \)
29$D_{4}$ \( ( 1 - \)\(43\!\cdots\!80\)\( p T + \)\(26\!\cdots\!98\)\( p^{2} T^{2} - \)\(43\!\cdots\!80\)\( p^{38} T^{3} + p^{74} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - \)\(84\!\cdots\!04\)\( p T + \)\(25\!\cdots\!06\)\( p^{2} T^{2} - \)\(84\!\cdots\!04\)\( p^{38} T^{3} + p^{74} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - \)\(21\!\cdots\!80\)\( T^{2} + \)\(29\!\cdots\!78\)\( T^{4} - \)\(21\!\cdots\!80\)\( p^{74} T^{6} + p^{148} T^{8} \)
41$D_{4}$ \( ( 1 + \)\(12\!\cdots\!36\)\( T + \)\(12\!\cdots\!86\)\( T^{2} + \)\(12\!\cdots\!36\)\( p^{37} T^{3} + p^{74} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - \)\(22\!\cdots\!00\)\( T^{2} - \)\(13\!\cdots\!02\)\( T^{4} - \)\(22\!\cdots\!00\)\( p^{74} T^{6} + p^{148} T^{8} \)
47$D_4\times C_2$ \( 1 - \)\(28\!\cdots\!40\)\( T^{2} + \)\(30\!\cdots\!38\)\( T^{4} - \)\(28\!\cdots\!40\)\( p^{74} T^{6} + p^{148} T^{8} \)
53$D_4\times C_2$ \( 1 - \)\(84\!\cdots\!40\)\( T^{2} + \)\(46\!\cdots\!38\)\( T^{4} - \)\(84\!\cdots\!40\)\( p^{74} T^{6} + p^{148} T^{8} \)
59$D_{4}$ \( ( 1 - \)\(23\!\cdots\!40\)\( T + \)\(64\!\cdots\!38\)\( T^{2} - \)\(23\!\cdots\!40\)\( p^{37} T^{3} + p^{74} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - \)\(10\!\cdots\!44\)\( T + \)\(10\!\cdots\!26\)\( T^{2} - \)\(10\!\cdots\!44\)\( p^{37} T^{3} + p^{74} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - \)\(69\!\cdots\!60\)\( T^{2} + \)\(28\!\cdots\!58\)\( T^{4} - \)\(69\!\cdots\!60\)\( p^{74} T^{6} + p^{148} T^{8} \)
71$D_{4}$ \( ( 1 + \)\(74\!\cdots\!16\)\( T + \)\(58\!\cdots\!46\)\( T^{2} + \)\(74\!\cdots\!16\)\( p^{37} T^{3} + p^{74} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - \)\(33\!\cdots\!20\)\( T^{2} + \)\(42\!\cdots\!18\)\( T^{4} - \)\(33\!\cdots\!20\)\( p^{74} T^{6} + p^{148} T^{8} \)
79$D_{4}$ \( ( 1 + \)\(27\!\cdots\!80\)\( T + \)\(64\!\cdots\!42\)\( p T^{2} + \)\(27\!\cdots\!80\)\( p^{37} T^{3} + p^{74} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - \)\(27\!\cdots\!60\)\( T^{2} + \)\(38\!\cdots\!58\)\( T^{4} - \)\(27\!\cdots\!60\)\( p^{74} T^{6} + p^{148} T^{8} \)
89$D_{4}$ \( ( 1 - \)\(13\!\cdots\!60\)\( T + \)\(23\!\cdots\!58\)\( T^{2} - \)\(13\!\cdots\!60\)\( p^{37} T^{3} + p^{74} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - \)\(78\!\cdots\!40\)\( T^{2} + \)\(30\!\cdots\!38\)\( T^{4} - \)\(78\!\cdots\!40\)\( p^{74} T^{6} + p^{148} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.16963935013912798873156370159, −6.86576296954759850702204769466, −6.60893528521541672257309134465, −6.41847882068679130062088845174, −6.20803092466880470575235927502, −5.55419398780132498861449836878, −5.36258687809282993913279347802, −4.99141963107884952760491815130, −4.65586780171470725972535602826, −4.65368637811279987078930293727, −4.27480837362406501285910272327, −3.89981183664887117745918828995, −3.82011241451543731876518533666, −3.19628568628580867001106655234, −2.90568439056820371127755326393, −2.65733701182515049661562570090, −2.46072723556122825635893930327, −2.15497441414689432035231039873, −1.75245722670016953137950360283, −1.74569867412075831408991212712, −1.57527619239360043289703522741, −1.12577152703225214822048256987, −0.65371497003403686505607208548, −0.64145346317658265134020937135, −0.12843252446085591193563613650, 0.12843252446085591193563613650, 0.64145346317658265134020937135, 0.65371497003403686505607208548, 1.12577152703225214822048256987, 1.57527619239360043289703522741, 1.74569867412075831408991212712, 1.75245722670016953137950360283, 2.15497441414689432035231039873, 2.46072723556122825635893930327, 2.65733701182515049661562570090, 2.90568439056820371127755326393, 3.19628568628580867001106655234, 3.82011241451543731876518533666, 3.89981183664887117745918828995, 4.27480837362406501285910272327, 4.65368637811279987078930293727, 4.65586780171470725972535602826, 4.99141963107884952760491815130, 5.36258687809282993913279347802, 5.55419398780132498861449836878, 6.20803092466880470575235927502, 6.41847882068679130062088845174, 6.60893528521541672257309134465, 6.86576296954759850702204769466, 7.16963935013912798873156370159

Graph of the $Z$-function along the critical line