L(s) = 1 | + 4-s − 3·5-s + 5·9-s − 4·11-s + 16-s − 16·19-s − 3·20-s + 5·25-s − 12·29-s + 2·31-s + 5·36-s + 12·41-s − 4·44-s − 15·45-s + 4·49-s + 12·55-s + 18·59-s + 20·61-s + 5·64-s − 6·71-s − 16·76-s − 28·79-s − 3·80-s + 9·81-s + 6·89-s + 48·95-s − 20·99-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 1.34·5-s + 5/3·9-s − 1.20·11-s + 1/4·16-s − 3.67·19-s − 0.670·20-s + 25-s − 2.22·29-s + 0.359·31-s + 5/6·36-s + 1.87·41-s − 0.603·44-s − 2.23·45-s + 4/7·49-s + 1.61·55-s + 2.34·59-s + 2.56·61-s + 5/8·64-s − 0.712·71-s − 1.83·76-s − 3.15·79-s − 0.335·80-s + 81-s + 0.635·89-s + 4.92·95-s − 2.01·99-s + ⋯ |
Λ(s)=(=(9150625s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=(9150625s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
9150625
= 54⋅114
|
Sign: |
1
|
Analytic conductor: |
0.0372013 |
Root analytic conductor: |
0.662704 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 9150625, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.4956520453 |
L(21) |
≈ |
0.4956520453 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | C22 | 1+3T+4T2+3pT3+p2T4 |
| 11 | C1 | (1+T)4 |
good | 2 | D4×C2 | 1−T2−p2T6+p4T8 |
| 3 | C22×C22 | (1−T−2T2−pT3+p2T4)(1+T−2T2+pT3+p2T4) |
| 7 | C2 | (1−4T+pT2)2(1+4T+pT2)2 |
| 13 | C2 | (1−pT2)4 |
| 17 | D4×C2 | 1−40T2+846T4−40p2T6+p4T8 |
| 19 | C2 | (1+4T+pT2)4 |
| 23 | D4×C2 | 1−85T2+2856T4−85p2T6+p4T8 |
| 29 | D4 | (1+6T+34T2+6pT3+p2T4)2 |
| 31 | D4 | (1−T+54T2−pT3+p2T4)2 |
| 37 | C22×C22 | (1−7T+12T2−7pT3+p2T4)(1+7T+12T2+7pT3+p2T4) |
| 41 | D4 | (1−6T+58T2−6pT3+p2T4)2 |
| 43 | C22 | (1−74T2+p2T4)2 |
| 47 | C2 | (1−12T+pT2)2(1+12T+pT2)2 |
| 53 | D4×C2 | 1−100T2+6006T4−100p2T6+p4T8 |
| 59 | D4 | (1−9T+130T2−9pT3+p2T4)2 |
| 61 | D4 | (1−10T+114T2−10pT3+p2T4)2 |
| 67 | D4×C2 | 1−181T2+15312T4−181p2T6+p4T8 |
| 71 | D4 | (1+3T+70T2+3pT3+p2T4)2 |
| 73 | C22 | (1−98T2+p2T4)2 |
| 79 | D4 | (1+14T+174T2+14pT3+p2T4)2 |
| 83 | C22 | (1−122T2+p2T4)2 |
| 89 | D4 | (1−3T+172T2−3pT3+p2T4)2 |
| 97 | D4×C2 | 1−337T2+47136T4−337p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.51323317728160153252196799477, −11.23905208913192929239537573227, −10.76708718026809165163786206272, −10.55003680888481659010168730285, −10.34868265170857292905220817206, −10.21784533693697580003851458916, −9.572150857601680511869988955596, −9.384390295239582833487040197405, −8.752358483478454298537765325143, −8.561913929967990611253256812393, −8.261424559393711865296506807208, −7.75464132179680785468636652988, −7.72407164836328248452341648958, −7.16134975081704456913463737652, −6.85437210822826851515912330194, −6.76134604263451556055217846691, −6.13306182954689398397886189556, −5.52923801730463138407263999870, −5.42054206796080839394948654022, −4.38975127802683186965272439597, −4.27157937693817625799324775125, −4.12586615836761186344194460914, −3.47984059806640897081261858555, −2.45217711766523776713592093680, −2.09429720371933036108397787319,
2.09429720371933036108397787319, 2.45217711766523776713592093680, 3.47984059806640897081261858555, 4.12586615836761186344194460914, 4.27157937693817625799324775125, 4.38975127802683186965272439597, 5.42054206796080839394948654022, 5.52923801730463138407263999870, 6.13306182954689398397886189556, 6.76134604263451556055217846691, 6.85437210822826851515912330194, 7.16134975081704456913463737652, 7.72407164836328248452341648958, 7.75464132179680785468636652988, 8.261424559393711865296506807208, 8.561913929967990611253256812393, 8.752358483478454298537765325143, 9.384390295239582833487040197405, 9.572150857601680511869988955596, 10.21784533693697580003851458916, 10.34868265170857292905220817206, 10.55003680888481659010168730285, 10.76708718026809165163786206272, 11.23905208913192929239537573227, 11.51323317728160153252196799477