L(s) = 1 | − 12·19-s − 8·31-s + 26·49-s − 4·61-s + 12·79-s − 64·109-s − 24·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 34·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯ |
L(s) = 1 | − 2.75·19-s − 1.43·31-s + 26/7·49-s − 0.512·61-s + 1.35·79-s − 6.13·109-s − 2.18·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2.61·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + ⋯ |
Λ(s)=(=((28⋅312⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((28⋅312⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
28⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
345.687 |
Root analytic conductor: |
2.07651 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 28⋅312⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.135720732 |
L(21) |
≈ |
1.135720732 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C22 | 1+p2T4 |
good | 7 | C22 | (1−13T2+p2T4)2 |
| 11 | C22 | (1+12T2+p2T4)2 |
| 13 | C22 | (1−17T2+p2T4)2 |
| 17 | C22 | (1+6T2+p2T4)2 |
| 19 | C2 | (1+3T+pT2)4 |
| 23 | C22 | (1−36T2+p2T4)2 |
| 29 | C22 | (1−32T2+p2T4)2 |
| 31 | C2 | (1+2T+pT2)4 |
| 37 | C22 | (1−73T2+p2T4)2 |
| 41 | C22 | (1+72T2+p2T4)2 |
| 43 | C22 | (1+14T2+p2T4)2 |
| 47 | C22 | (1−54T2+p2T4)2 |
| 53 | C22 | (1−16T2+p2T4)2 |
| 59 | C22 | (1+78T2+p2T4)2 |
| 61 | C2 | (1+T+pT2)4 |
| 67 | C22 | (1−13T2+p2T4)2 |
| 71 | C22 | (1+52T2+p2T4)2 |
| 73 | C22 | (1+23T2+p2T4)2 |
| 79 | C2 | (1−3T+pT2)4 |
| 83 | C22 | (1+84T2+p2T4)2 |
| 89 | C22 | (1+18T2+p2T4)2 |
| 97 | C22 | (1−193T2+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.86528528412522724079353843836, −7.59311716056863857875950867392, −7.19536141654616463916172647649, −7.06336344421532421814038642601, −6.87961662612998868504155277168, −6.72201669085319595487951365473, −6.25582017012099008313409589401, −6.23697560124964681076913275600, −5.69349141421041870368883655237, −5.64314905237052058772885131642, −5.54945835612603859208996413079, −4.97329274697948220646736498621, −4.91354576492017427015098996358, −4.29503185762542678734933904786, −4.21871151075220772968317566886, −4.14142567463601568673380914962, −3.68838905701190899944937263707, −3.51083706802360544452006946189, −2.98148059706059539763732947131, −2.55891320612509104968977451475, −2.40614944817258005486158744738, −2.04062455265025563980423584219, −1.68221706706578788417056345830, −1.11141292196279116917135978453, −0.35332328426712925442445266471,
0.35332328426712925442445266471, 1.11141292196279116917135978453, 1.68221706706578788417056345830, 2.04062455265025563980423584219, 2.40614944817258005486158744738, 2.55891320612509104968977451475, 2.98148059706059539763732947131, 3.51083706802360544452006946189, 3.68838905701190899944937263707, 4.14142567463601568673380914962, 4.21871151075220772968317566886, 4.29503185762542678734933904786, 4.91354576492017427015098996358, 4.97329274697948220646736498621, 5.54945835612603859208996413079, 5.64314905237052058772885131642, 5.69349141421041870368883655237, 6.23697560124964681076913275600, 6.25582017012099008313409589401, 6.72201669085319595487951365473, 6.87961662612998868504155277168, 7.06336344421532421814038642601, 7.19536141654616463916172647649, 7.59311716056863857875950867392, 7.86528528412522724079353843836