L(s) = 1 | + 14·4-s − 18·9-s − 184·11-s + 99·16-s + 216·19-s + 472·29-s − 120·31-s − 252·36-s + 88·41-s − 2.57e3·44-s − 98·49-s + 928·59-s − 1.36e3·61-s + 924·64-s − 1.48e3·71-s + 3.02e3·76-s + 816·79-s + 243·81-s + 2.66e3·89-s + 3.31e3·99-s + 136·101-s − 5.27e3·109-s + 6.60e3·116-s + 1.58e4·121-s − 1.68e3·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 7/4·4-s − 2/3·9-s − 5.04·11-s + 1.54·16-s + 2.60·19-s + 3.02·29-s − 0.695·31-s − 7/6·36-s + 0.335·41-s − 8.82·44-s − 2/7·49-s + 2.04·59-s − 2.87·61-s + 1.80·64-s − 2.47·71-s + 4.56·76-s + 1.16·79-s + 1/3·81-s + 3.17·89-s + 3.36·99-s + 0.133·101-s − 4.63·109-s + 5.28·116-s + 11.9·121-s − 1.21·124-s + 0.000698·127-s + 0.000666·131-s + ⋯ |
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
920664. |
Root analytic conductor: |
5.56560 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅58⋅74, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
3.142103983 |
L(21) |
≈ |
3.142103983 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | (1+p2T2)2 |
| 5 | | 1 |
| 7 | C2 | (1+p2T2)2 |
good | 2 | D4×C2 | 1−7pT2+97T4−7p7T6+p12T8 |
| 11 | D4 | (1+92T+4758T2+92p3T3+p6T4)2 |
| 13 | D4×C2 | 1+5684T2+17268502T4+5684p6T6+p12T8 |
| 17 | D4×C2 | 1+676T2+29648902T4+676p6T6+p12T8 |
| 19 | D4 | (1−108T+13254T2−108p3T3+p6T4)2 |
| 23 | D4×C2 | 1+284pT2+101938534T4+284p7T6+p12T8 |
| 29 | D4 | (1−236T+61982T2−236p3T3+p6T4)2 |
| 31 | D4 | (1+60T+8462T2+60p3T3+p6T4)2 |
| 37 | D4×C2 | 1−176044T2+12759471222T4−176044p6T6+p12T8 |
| 41 | D4 | (1−44T+106326T2−44p3T3+p6T4)2 |
| 43 | D4×C2 | 1−144940T2+16379434678T4−144940p6T6+p12T8 |
| 47 | D4×C2 | 1−53052T2−317140666T4−53052p6T6+p12T8 |
| 53 | D4×C2 | 1−521420T2+112288959478T4−521420p6T6+p12T8 |
| 59 | D4 | (1−464T+458102T2−464p3T3+p6T4)2 |
| 61 | D4 | (1+684T+535646T2+684p3T3+p6T4)2 |
| 67 | D4×C2 | 1−663244T2+218042637142T4−663244p6T6+p12T8 |
| 71 | D4 | (1+740T+757502T2+740p3T3+p6T4)2 |
| 73 | D4×C2 | 1−1317340T2+723135691558T4−1317340p6T6+p12T8 |
| 79 | D4 | (1−408T−143586T2−408p3T3+p6T4)2 |
| 83 | D4×C2 | 1−2031756T2+1672847111702T4−2031756p6T6+p12T8 |
| 89 | D4 | (1−1332T+1790774T2−1332p3T3+p6T4)2 |
| 97 | D4×C2 | 1−580380T2+1528544052038T4−580380p6T6+p12T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.50474014685843443155313603229, −7.38996629216998087385113079209, −6.98237075153736080608079536876, −6.59731488510146135835771490082, −6.53484511589033305771407784021, −6.23086564069295230248777149662, −5.70485548349316412714677842163, −5.68003048887681946222963262919, −5.57058158395315353343262965099, −5.15256557484956982259026126728, −4.90853104921410795360070234082, −4.83976750361355594094720533691, −4.75149722176922339173200229711, −3.88900486469867854799395718820, −3.68159579613682151539571364965, −3.13253116104481272972588001508, −2.95761621223385487129699275954, −2.83528033427096463647666197159, −2.62745804493684440791573587046, −2.37999062387175313573331307629, −2.18498110468207537380224385567, −1.44632169346843767737681811884, −1.21100416868405288663222589763, −0.54152657936631692433730521784, −0.30721832406503930222481964623,
0.30721832406503930222481964623, 0.54152657936631692433730521784, 1.21100416868405288663222589763, 1.44632169346843767737681811884, 2.18498110468207537380224385567, 2.37999062387175313573331307629, 2.62745804493684440791573587046, 2.83528033427096463647666197159, 2.95761621223385487129699275954, 3.13253116104481272972588001508, 3.68159579613682151539571364965, 3.88900486469867854799395718820, 4.75149722176922339173200229711, 4.83976750361355594094720533691, 4.90853104921410795360070234082, 5.15256557484956982259026126728, 5.57058158395315353343262965099, 5.68003048887681946222963262919, 5.70485548349316412714677842163, 6.23086564069295230248777149662, 6.53484511589033305771407784021, 6.59731488510146135835771490082, 6.98237075153736080608079536876, 7.38996629216998087385113079209, 7.50474014685843443155313603229