L(s) = 1 | − 4-s − 18·9-s − 44·11-s − 111·16-s − 204·19-s + 392·29-s + 300·31-s + 18·36-s − 352·41-s + 44·44-s − 98·49-s + 1.68e3·59-s − 408·61-s + 159·64-s + 3.34e3·71-s + 204·76-s + 1.77e3·79-s + 243·81-s − 1.17e3·89-s + 792·99-s − 64·101-s + 608·109-s − 392·116-s − 3.98e3·121-s − 300·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 1/8·4-s − 2/3·9-s − 1.20·11-s − 1.73·16-s − 2.46·19-s + 2.51·29-s + 1.73·31-s + 1/12·36-s − 1.34·41-s + 0.150·44-s − 2/7·49-s + 3.72·59-s − 0.856·61-s + 0.310·64-s + 5.58·71-s + 0.307·76-s + 2.52·79-s + 1/3·81-s − 1.40·89-s + 0.804·99-s − 0.0630·101-s + 0.534·109-s − 0.313·116-s − 2.99·121-s − 0.217·124-s + 0.000698·127-s + 0.000666·131-s + ⋯ |
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
920664. |
Root analytic conductor: |
5.56560 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅58⋅74, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.1923324772 |
L(21) |
≈ |
0.1923324772 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | (1+p2T2)2 |
| 5 | | 1 |
| 7 | C2 | (1+p2T2)2 |
good | 2 | D4×C2 | 1+T2+7p4T4+p6T6+p12T8 |
| 11 | D4 | (1+2pT+2718T2+2p4T3+p6T4)2 |
| 13 | D4×C2 | 1−8416T2+27329422T4−8416p6T6+p12T8 |
| 17 | D4×C2 | 1−4604T2−2402618T4−4604p6T6+p12T8 |
| 19 | D4 | (1+102T+13134T2+102p3T3+p6T4)2 |
| 23 | D4×C2 | 1−1868T2−142455866T4−1868p6T6+p12T8 |
| 29 | D4 | (1−196T+20942T2−196p3T3+p6T4)2 |
| 31 | D4 | (1−150T+36542T2−150p3T3+p6T4)2 |
| 37 | D4×C2 | 1−155884T2+11012319222T4−155884p6T6+p12T8 |
| 41 | D4 | (1+176T−16914T2+176p3T3+p6T4)2 |
| 43 | D4×C2 | 1−225580T2+23395199158T4−225580p6T6+p12T8 |
| 47 | D4×C2 | 1−183612T2+18245588294T4−183612p6T6+p12T8 |
| 53 | D4×C2 | 1−302000T2+54356941198T4−302000p6T6+p12T8 |
| 59 | D4 | (1−844T+474182T2−844p3T3+p6T4)2 |
| 61 | D4 | (1+204T+455006T2+204p3T3+p6T4)2 |
| 67 | D4×C2 | 1−1064524T2+463499688022T4−1064524p6T6+p12T8 |
| 71 | D4 | (1−1670T+1384382T2−1670p3T3+p6T4)2 |
| 73 | D4×C2 | 1−155440T2+209914818238T4−155440p6T6+p12T8 |
| 79 | D4 | (1−888T+1007454T2−888p3T3+p6T4)2 |
| 83 | D4×C2 | 1−340236T2+29905619222T4−340236p6T6+p12T8 |
| 89 | D4 | (1+588T+1495334T2+588p3T3+p6T4)2 |
| 97 | D4×C2 | 1−310080T2+1253411633918T4−310080p6T6+p12T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.46468960638725468710410316764, −6.85758866460490217686195210065, −6.81884674080411514778326676708, −6.70563780339687115985473973071, −6.45658335329951133032491410051, −6.31714700248074349796356714708, −6.21815021159355175710758615853, −5.47646647078565872685525504207, −5.24789212667538642918090425330, −5.15095990825133038978404529576, −5.12339337988887692799664641898, −4.52290368930383097628961529034, −4.33430164799673217844166853276, −4.31358716731988401315353683963, −3.65464113277708188772499867254, −3.64905251990573294445280500922, −3.16997452289445418459853478361, −2.62292098925399939831972819075, −2.37717022641922166950124653938, −2.34224726254288258447271356778, −2.25852779927536283359697924654, −1.50147145185159353282173626839, −0.868343270078126560103328904762, −0.69665451496178968429292956999, −0.07812670829720184653250556573,
0.07812670829720184653250556573, 0.69665451496178968429292956999, 0.868343270078126560103328904762, 1.50147145185159353282173626839, 2.25852779927536283359697924654, 2.34224726254288258447271356778, 2.37717022641922166950124653938, 2.62292098925399939831972819075, 3.16997452289445418459853478361, 3.64905251990573294445280500922, 3.65464113277708188772499867254, 4.31358716731988401315353683963, 4.33430164799673217844166853276, 4.52290368930383097628961529034, 5.12339337988887692799664641898, 5.15095990825133038978404529576, 5.24789212667538642918090425330, 5.47646647078565872685525504207, 6.21815021159355175710758615853, 6.31714700248074349796356714708, 6.45658335329951133032491410051, 6.70563780339687115985473973071, 6.81884674080411514778326676708, 6.85758866460490217686195210065, 7.46468960638725468710410316764