L(s) = 1 | − 6·2-s + 18·4-s + 10·7-s − 36·8-s + 9-s + 2·11-s − 60·14-s + 52·16-s + 6·17-s − 6·18-s + 2·19-s − 12·22-s + 6·23-s + 180·28-s − 4·29-s − 6·31-s − 48·32-s − 36·34-s + 18·36-s − 18·37-s − 12·38-s + 4·41-s + 36·44-s − 36·46-s + 61·49-s + 36·53-s − 360·56-s + ⋯ |
L(s) = 1 | − 4.24·2-s + 9·4-s + 3.77·7-s − 12.7·8-s + 1/3·9-s + 0.603·11-s − 16.0·14-s + 13·16-s + 1.45·17-s − 1.41·18-s + 0.458·19-s − 2.55·22-s + 1.25·23-s + 34.0·28-s − 0.742·29-s − 1.07·31-s − 8.48·32-s − 6.17·34-s + 3·36-s − 2.95·37-s − 1.94·38-s + 0.624·41-s + 5.42·44-s − 5.30·46-s + 61/7·49-s + 4.94·53-s − 48.1·56-s + ⋯ |
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((34⋅58⋅74)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
308.848 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅58⋅74, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.6392221296 |
L(21) |
≈ |
0.6392221296 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C22 | 1−T2+T4 |
| 5 | | 1 |
| 7 | C2 | (1−5T+pT2)2 |
good | 2 | C2×C22 | (1+pT+pT2)2(1+pT+pT2+p2T3+p2T4) |
| 11 | D4×C2 | 1−2T−16T2+4T3+235T4+4pT5−16p2T6−2p3T7+p4T8 |
| 13 | D4×C2 | 1−14T2+15pT4−14p2T6+p4T8 |
| 17 | D4×C2 | 1−6T+24T2−72T3+59T4−72pT5+24p2T6−6p3T7+p4T8 |
| 19 | D4×C2 | 1−2T−23T2+22T3+292T4+22pT5−23p2T6−2p3T7+p4T8 |
| 23 | D4×C2 | 1−6T+52T2−240T3+1347T4−240pT5+52p2T6−6p3T7+p4T8 |
| 29 | D4 | (1+2T+32T2+2pT3+p2T4)2 |
| 31 | D4×C2 | 1+6T−23T2−18T3+1404T4−18pT5−23p2T6+6p3T7+p4T8 |
| 37 | D4×C2 | 1+18T+205T2+1746T3+12036T4+1746pT5+205p2T6+18p3T7+p4T8 |
| 41 | D4 | (1−2T+80T2−2pT3+p2T4)2 |
| 43 | D4×C2 | 1−110T2+6291T4−110p2T6+p4T8 |
| 47 | C23 | 1+90T2+5891T4+90p2T6+p4T8 |
| 53 | D4×C2 | 1−36T+642T2−7560T3+64187T4−7560pT5+642p2T6−36p3T7+p4T8 |
| 59 | D4×C2 | 1−10T−16T2+20T3+4075T4+20pT5−16p2T6−10p3T7+p4T8 |
| 61 | C22 | (1+4T−45T2+4pT3+p2T4)2 |
| 67 | D4×C2 | 1−30T+473T2−5190T3+45540T4−5190pT5+473p2T6−30p3T7+p4T8 |
| 71 | D4 | (1−2T+116T2−2pT3+p2T4)2 |
| 73 | D4×C2 | 1−30T+505T2−6150T3+58596T4−6150pT5+505p2T6−30p3T7+p4T8 |
| 79 | D4×C2 | 1−6T−23T2+594T3−5604T4+594pT5−23p2T6−6p3T7+p4T8 |
| 83 | D4×C2 | 1−20T2+8586T4−20p2T6+p4T8 |
| 89 | D4×C2 | 1−6T−4T2+828T3−9525T4+828pT5−4p2T6−6p3T7+p4T8 |
| 97 | D4×C2 | 1−164T2+13254T4−164p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.902901532447817267410596539800, −7.71456437367338434598713672274, −7.48052191516048858585644476890, −7.45910403246871476877594419935, −7.39999107185373102339085595692, −6.81795350565640618371458417213, −6.69952447536074903986805879981, −6.64899230199804599491697035486, −5.81052105334269405746371238762, −5.66465800535425033931959532244, −5.43682811367613161335282733701, −5.06017043934034719462328163870, −4.94380827983789894853145636433, −4.88605919926622449298858228661, −4.22608444829518348100613054512, −3.75150188242948291701146128565, −3.66807239622448054706647150160, −3.43695980300812316507625698378, −2.26998119543594401573493276492, −2.24208178343154337055165461172, −2.17877235028455554693608118324, −1.72609792241351778106834425704, −0.975275579198860834757675919719, −0.952338313780787739264269641214, −0.937870288855792845004158091441,
0.937870288855792845004158091441, 0.952338313780787739264269641214, 0.975275579198860834757675919719, 1.72609792241351778106834425704, 2.17877235028455554693608118324, 2.24208178343154337055165461172, 2.26998119543594401573493276492, 3.43695980300812316507625698378, 3.66807239622448054706647150160, 3.75150188242948291701146128565, 4.22608444829518348100613054512, 4.88605919926622449298858228661, 4.94380827983789894853145636433, 5.06017043934034719462328163870, 5.43682811367613161335282733701, 5.66465800535425033931959532244, 5.81052105334269405746371238762, 6.64899230199804599491697035486, 6.69952447536074903986805879981, 6.81795350565640618371458417213, 7.39999107185373102339085595692, 7.45910403246871476877594419935, 7.48052191516048858585644476890, 7.71456437367338434598713672274, 7.902901532447817267410596539800