L(s) = 1 | − 1.40e5·5-s − 2.86e7·9-s − 5.86e8·13-s − 5.71e8·17-s − 3.86e11·25-s − 5.85e11·29-s − 2.77e12·37-s − 9.74e12·41-s + 4.02e12·45-s + 8.88e13·49-s + 9.39e13·53-s + 3.74e14·61-s + 8.23e13·65-s + 1.37e15·73-s + 6.17e14·81-s + 8.01e13·85-s + 2.06e16·89-s + 4.57e16·97-s + 3.93e16·101-s + 5.91e16·109-s + 1.24e17·113-s + 1.68e16·117-s + 1.63e17·121-s + 6.16e16·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 0.359·5-s − 2/3·9-s − 0.719·13-s − 0.0818·17-s − 2.53·25-s − 1.17·29-s − 0.788·37-s − 1.22·41-s + 0.239·45-s + 2.67·49-s + 1.50·53-s + 1.95·61-s + 0.258·65-s + 1.71·73-s + 1/3·81-s + 0.0294·85-s + 5.24·89-s + 5.83·97-s + 3.62·101-s + 2.96·109-s + 4.67·113-s + 0.479·117-s + 3.56·121-s + 1.03·125-s + 0.420·145-s + ⋯ |
Λ(s)=(=(5308416s/2ΓC(s)4L(s)Λ(17−s)
Λ(s)=(=(5308416s/2ΓC(s+8)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
5308416
= 216⋅34
|
Sign: |
1
|
Analytic conductor: |
3.68554×107 |
Root analytic conductor: |
8.82699 |
Motivic weight: |
16 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 5308416, ( :8,8,8,8), 1)
|
Particular Values
L(217) |
≈ |
2.988839123 |
L(21) |
≈ |
2.988839123 |
L(9) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.618240043885811050711211454956, −7.64952462279412294150800208921, −7.58434566357667481498786200258, −7.45670223527929715201828235175, −7.37004042987521028905699257540, −6.74651464549200882498748123583, −6.12924831322160617795791312833, −6.02089859849640008218403654781, −5.97237937388445877514528117082, −5.45349027786787418213711074836, −4.85973798952524210455834229786, −4.77889434722127173524023625977, −4.71052432045709622590226202616, −3.73784114846193849339579340085, −3.54432838761156332739151994531, −3.53670297657709487747972958832, −3.44433223266133500126060916990, −2.23773805320163551158854854031, −2.20757922059709369257527719095, −2.12963540060450191706320775637, −2.05417949892408489313833385916, −1.07053310363622544697666395004, −0.69635231894844950237929421598, −0.61548304338691277365798794316, −0.25347216797906775683724147926,
0.25347216797906775683724147926, 0.61548304338691277365798794316, 0.69635231894844950237929421598, 1.07053310363622544697666395004, 2.05417949892408489313833385916, 2.12963540060450191706320775637, 2.20757922059709369257527719095, 2.23773805320163551158854854031, 3.44433223266133500126060916990, 3.53670297657709487747972958832, 3.54432838761156332739151994531, 3.73784114846193849339579340085, 4.71052432045709622590226202616, 4.77889434722127173524023625977, 4.85973798952524210455834229786, 5.45349027786787418213711074836, 5.97237937388445877514528117082, 6.02089859849640008218403654781, 6.12924831322160617795791312833, 6.74651464549200882498748123583, 7.37004042987521028905699257540, 7.45670223527929715201828235175, 7.58434566357667481498786200258, 7.64952462279412294150800208921, 8.618240043885811050711211454956