Properties

Label 8-48e4-1.1-c10e4-0-1
Degree $8$
Conductor $5308416$
Sign $1$
Analytic cond. $865041.$
Root an. cond. $5.52242$
Motivic weight $10$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.00e3·5-s − 3.93e4·9-s + 8.64e5·13-s − 5.51e4·17-s − 3.05e7·25-s − 8.07e7·29-s − 2.12e8·37-s − 5.44e8·41-s − 1.18e8·45-s − 3.57e8·49-s − 8.88e8·53-s − 2.08e8·61-s + 2.59e9·65-s + 4.88e9·73-s + 1.16e9·81-s − 1.65e8·85-s + 2.15e10·89-s + 1.49e10·97-s + 1.21e10·101-s − 6.99e10·109-s + 5.71e10·113-s − 3.40e10·117-s + 1.16e10·121-s − 1.24e11·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  + 0.959·5-s − 2/3·9-s + 2.32·13-s − 0.0388·17-s − 3.12·25-s − 3.93·29-s − 3.06·37-s − 4.69·41-s − 0.639·45-s − 1.26·49-s − 2.12·53-s − 0.246·61-s + 2.23·65-s + 2.35·73-s + 1/3·81-s − 0.0372·85-s + 3.85·89-s + 1.74·97-s + 1.15·101-s − 4.54·109-s + 3.10·113-s − 1.55·117-s + 0.448·121-s − 4.09·125-s − 3.78·145-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s+5)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5308416\)    =    \(2^{16} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(865041.\)
Root analytic conductor: \(5.52242\)
Motivic weight: \(10\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5308416,\ (\ :5, 5, 5, 5),\ 1)\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(1.420712270\)
\(L(\frac12)\) \(\approx\) \(1.420712270\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + p^{9} T^{2} )^{2} \)
good5$D_{4}$ \( ( 1 - 12 p^{3} T + 3725566 p T^{2} - 12 p^{13} T^{3} + p^{20} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 + 357640988 T^{2} + 3876072374580582 p^{2} T^{4} + 357640988 p^{20} T^{6} + p^{40} T^{8} \)
11$D_4\times C_2$ \( 1 - 11621066500 T^{2} - \)\(57\!\cdots\!18\)\( T^{4} - 11621066500 p^{20} T^{6} + p^{40} T^{8} \)
13$D_{4}$ \( ( 1 - 33236 p T + 195679411734 T^{2} - 33236 p^{11} T^{3} + p^{20} T^{4} )^{2} \)
17$D_{4}$ \( ( 1 + 27564 T - 539669051098 T^{2} + 27564 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 15556349136580 T^{2} + \)\(11\!\cdots\!22\)\( T^{4} - 15556349136580 p^{20} T^{6} + p^{40} T^{8} \)
23$D_4\times C_2$ \( 1 - 132444369581380 T^{2} + \)\(77\!\cdots\!82\)\( T^{4} - 132444369581380 p^{20} T^{6} + p^{40} T^{8} \)
29$D_{4}$ \( ( 1 + 40395156 T + 1171301940969206 T^{2} + 40395156 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 3045470037697060 T^{2} + \)\(36\!\cdots\!22\)\( T^{4} - 3045470037697060 p^{20} T^{6} + p^{40} T^{8} \)
37$D_{4}$ \( ( 1 + 106255820 T + 11985453761613078 T^{2} + 106255820 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
41$D_{4}$ \( ( 1 + 272226636 T + 39503940013305926 T^{2} + 272226636 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 26934619838954500 T^{2} + \)\(74\!\cdots\!82\)\( T^{4} - 26934619838954500 p^{20} T^{6} + p^{40} T^{8} \)
47$D_4\times C_2$ \( 1 - 77230393510956292 T^{2} + \)\(63\!\cdots\!98\)\( T^{4} - 77230393510956292 p^{20} T^{6} + p^{40} T^{8} \)
53$D_{4}$ \( ( 1 + 444402036 T + 202557268735976342 T^{2} + 444402036 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 1112740587853424260 T^{2} + \)\(82\!\cdots\!82\)\( T^{4} - 1112740587853424260 p^{20} T^{6} + p^{40} T^{8} \)
61$D_{4}$ \( ( 1 + 104167628 T + 1117708367535171318 T^{2} + 104167628 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 6706192991646129220 T^{2} + \)\(17\!\cdots\!22\)\( T^{4} - 6706192991646129220 p^{20} T^{6} + p^{40} T^{8} \)
71$D_4\times C_2$ \( 1 - 1787686856744485828 T^{2} + \)\(15\!\cdots\!18\)\( T^{4} - 1787686856744485828 p^{20} T^{6} + p^{40} T^{8} \)
73$D_{4}$ \( ( 1 - 2440834724 T + 7171167497674590822 T^{2} - 2440834724 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 - 31243817648500267684 T^{2} + \)\(42\!\cdots\!66\)\( T^{4} - 31243817648500267684 p^{20} T^{6} + p^{40} T^{8} \)
83$D_4\times C_2$ \( 1 - 35005678821449308612 T^{2} + \)\(78\!\cdots\!18\)\( T^{4} - 35005678821449308612 p^{20} T^{6} + p^{40} T^{8} \)
89$D_{4}$ \( ( 1 - 10770191268 T + 83664060888855623078 T^{2} - 10770191268 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 - 7482884228 T + 77690767738995235974 T^{2} - 7482884228 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.359360866834870867073179132983, −9.292259545149114541870937937792, −8.786825761509876715135981880396, −8.490174920622977460024207255727, −8.109890155848125663795214427292, −7.75561678814156486087073831588, −7.72139907455090462592022869964, −6.91924324442602423488893329484, −6.58196539170073039710313682481, −6.42258712184795806850901461522, −6.00749367857920925770467056062, −5.61173046505282851671702380050, −5.32091912350776865152470371279, −5.26403768043087518146691135722, −4.58809332837017225896294151566, −3.77789581347441083510251539661, −3.60728090836348501151622724560, −3.42638991453119779974119538926, −3.27762741534758948605038293354, −1.98419302099995261396626592497, −1.87766640719667360215074073839, −1.75822795208360437399139355236, −1.59340526080658926942323332029, −0.46710347405720724447669095769, −0.23173603768634559891881807168, 0.23173603768634559891881807168, 0.46710347405720724447669095769, 1.59340526080658926942323332029, 1.75822795208360437399139355236, 1.87766640719667360215074073839, 1.98419302099995261396626592497, 3.27762741534758948605038293354, 3.42638991453119779974119538926, 3.60728090836348501151622724560, 3.77789581347441083510251539661, 4.58809332837017225896294151566, 5.26403768043087518146691135722, 5.32091912350776865152470371279, 5.61173046505282851671702380050, 6.00749367857920925770467056062, 6.42258712184795806850901461522, 6.58196539170073039710313682481, 6.91924324442602423488893329484, 7.72139907455090462592022869964, 7.75561678814156486087073831588, 8.109890155848125663795214427292, 8.490174920622977460024207255727, 8.786825761509876715135981880396, 9.292259545149114541870937937792, 9.359360866834870867073179132983

Graph of the $Z$-function along the critical line