Properties

Label 8-4650e4-1.1-c1e4-0-5
Degree $8$
Conductor $4.675\times 10^{14}$
Sign $1$
Analytic cond. $1.90072\times 10^{6}$
Root an. cond. $6.09347$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 2·9-s + 2·11-s + 3·16-s + 6·19-s − 12·29-s + 4·31-s + 4·36-s + 12·41-s − 4·44-s + 19·49-s + 36·59-s + 24·61-s − 4·64-s − 6·71-s − 12·76-s + 42·79-s + 3·81-s + 30·89-s − 4·99-s + 6·101-s + 28·109-s + 24·116-s − 33·121-s − 8·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 4-s − 2/3·9-s + 0.603·11-s + 3/4·16-s + 1.37·19-s − 2.22·29-s + 0.718·31-s + 2/3·36-s + 1.87·41-s − 0.603·44-s + 19/7·49-s + 4.68·59-s + 3.07·61-s − 1/2·64-s − 0.712·71-s − 1.37·76-s + 4.72·79-s + 1/3·81-s + 3.17·89-s − 0.402·99-s + 0.597·101-s + 2.68·109-s + 2.22·116-s − 3·121-s − 0.718·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 31^{4}\)
Sign: $1$
Analytic conductor: \(1.90072\times 10^{6}\)
Root analytic conductor: \(6.09347\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 31^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(7.460033390\)
\(L(\frac12)\) \(\approx\) \(7.460033390\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_2$ \( ( 1 + T^{2} )^{2} \)
5 \( 1 \)
31$C_1$ \( ( 1 - T )^{4} \)
good7$D_4\times C_2$ \( 1 - 19 T^{2} + 184 T^{4} - 19 p^{2} T^{6} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 - T + 18 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 32 T^{2} + 766 T^{4} - 32 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 - 3 T + 2 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 59 T^{2} + 1720 T^{4} - 59 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 + 6 T + 50 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 112 T^{2} + 5806 T^{4} - 112 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 6 T + 74 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 + 53 T^{2} + 1744 T^{4} + 53 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 152 T^{2} + 10126 T^{4} - 152 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 23 T^{2} + 4216 T^{4} - 23 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 - 18 T + 182 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
67$D_4\times C_2$ \( 1 + 56 T^{2} + 4254 T^{4} + 56 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 + 3 T + 106 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 79 T^{2} + 12112 T^{4} - 79 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 - 21 T + 230 T^{2} - 21 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 124 T^{2} + 7830 T^{4} - 124 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 - 15 T + 196 T^{2} - 15 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 158 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.86849769472132214116281617817, −5.51142217494776852550288840647, −5.46939516065669946944520553818, −5.25549167855958251282433018805, −5.19643992305739386259010314904, −5.04121553231473481601930658221, −4.72189350679260254605982719829, −4.39734108172500751164141073311, −4.12487037964941697116975643156, −4.10570864890589416960167320056, −3.93805618749383463815397868393, −3.68828068135981655495204589273, −3.43426961638120682080913853913, −3.30929073167262113917873258344, −3.26092895629926949272166384959, −2.67415892373530616426787958422, −2.48778996783538632993947573265, −2.22282443393755612369413455493, −2.16597438457862505212061249361, −1.96165774967665834184026430781, −1.51204612730515605206824358824, −0.959054634563096058020569026454, −0.69339981519109724514374122871, −0.66502963529881758785955748632, −0.63357346765610082826194222411, 0.63357346765610082826194222411, 0.66502963529881758785955748632, 0.69339981519109724514374122871, 0.959054634563096058020569026454, 1.51204612730515605206824358824, 1.96165774967665834184026430781, 2.16597438457862505212061249361, 2.22282443393755612369413455493, 2.48778996783538632993947573265, 2.67415892373530616426787958422, 3.26092895629926949272166384959, 3.30929073167262113917873258344, 3.43426961638120682080913853913, 3.68828068135981655495204589273, 3.93805618749383463815397868393, 4.10570864890589416960167320056, 4.12487037964941697116975643156, 4.39734108172500751164141073311, 4.72189350679260254605982719829, 5.04121553231473481601930658221, 5.19643992305739386259010314904, 5.25549167855958251282433018805, 5.46939516065669946944520553818, 5.51142217494776852550288840647, 5.86849769472132214116281617817

Graph of the $Z$-function along the critical line