Properties

Label 8-45e8-1.1-c1e4-0-15
Degree $8$
Conductor $1.682\times 10^{13}$
Sign $1$
Analytic cond. $68361.0$
Root an. cond. $4.02115$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s − 12·11-s + 7·16-s + 4·19-s − 12·29-s − 4·31-s − 24·41-s + 48·44-s − 16·49-s − 24·59-s + 8·61-s − 8·64-s − 36·71-s − 16·76-s + 16·79-s − 12·89-s − 24·101-s + 16·109-s + 48·116-s + 52·121-s + 16·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  − 2·4-s − 3.61·11-s + 7/4·16-s + 0.917·19-s − 2.22·29-s − 0.718·31-s − 3.74·41-s + 7.23·44-s − 2.28·49-s − 3.12·59-s + 1.02·61-s − 64-s − 4.27·71-s − 1.83·76-s + 1.80·79-s − 1.27·89-s − 2.38·101-s + 1.53·109-s + 4.45·116-s + 4.72·121-s + 1.43·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{16} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(68361.0\)
Root analytic conductor: \(4.02115\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 3^{16} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$D_4\times C_2$ \( 1 + p^{2} T^{2} + 9 T^{4} + p^{4} T^{6} + p^{4} T^{8} \)
7$D_4\times C_2$ \( 1 + 16 T^{2} + 135 T^{4} + 16 p^{2} T^{6} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 + 6 T + 28 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 20 T^{2} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 + 40 T^{2} + 786 T^{4} + 40 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 - 2 T + 36 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 + 88 T^{2} + 2991 T^{4} + 88 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 + 6 T + 55 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 + 2 T + 60 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 56 T^{2} + p^{2} T^{4} )^{2} \)
41$D_{4}$ \( ( 1 + 12 T + 115 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 + 88 T^{2} + 3906 T^{4} + 88 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 + 160 T^{2} + 10791 T^{4} + 160 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 + 196 T^{2} + 15174 T^{4} + 196 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 + 12 T + 142 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 4 T + 51 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 + 184 T^{2} + 17199 T^{4} + 184 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 + 18 T + 196 T^{2} + 18 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 74 T^{2} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 - 8 T + 162 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 + 160 T^{2} + 237 p T^{4} + 160 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 + 6 T + 79 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 + 52 T^{2} + 15606 T^{4} + 52 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.08132901188523211428703620602, −6.71902792154083534705674743420, −6.31759477770257476063171847735, −6.25199012258728612563505704159, −6.07187244337707152199807554226, −5.63357519933775621292865858143, −5.55788632991090118603725359419, −5.35697581715995615644580918662, −5.21559152981152156899512728043, −4.85832966913033718092105022409, −4.84872088774248627400816145810, −4.76365493224118229097579702390, −4.66611721763567886754645592883, −4.05103705666245124434027104217, −3.77630586526435975535751320334, −3.65230448601682388537914482538, −3.59945666760147367008141919173, −3.00828099489773107372633597923, −2.99256636265211871951421339073, −2.81452384711716862351284369338, −2.39956928953848527145903951004, −2.14295196954076398741079532985, −1.67123418952172474069803198454, −1.36335420204119645856285988328, −1.30389575925123182934085830465, 0, 0, 0, 0, 1.30389575925123182934085830465, 1.36335420204119645856285988328, 1.67123418952172474069803198454, 2.14295196954076398741079532985, 2.39956928953848527145903951004, 2.81452384711716862351284369338, 2.99256636265211871951421339073, 3.00828099489773107372633597923, 3.59945666760147367008141919173, 3.65230448601682388537914482538, 3.77630586526435975535751320334, 4.05103705666245124434027104217, 4.66611721763567886754645592883, 4.76365493224118229097579702390, 4.84872088774248627400816145810, 4.85832966913033718092105022409, 5.21559152981152156899512728043, 5.35697581715995615644580918662, 5.55788632991090118603725359419, 5.63357519933775621292865858143, 6.07187244337707152199807554226, 6.25199012258728612563505704159, 6.31759477770257476063171847735, 6.71902792154083534705674743420, 7.08132901188523211428703620602

Graph of the $Z$-function along the critical line