Properties

Label 8-45e8-1.1-c1e4-0-0
Degree $8$
Conductor $1.682\times 10^{13}$
Sign $1$
Analytic cond. $68361.0$
Root an. cond. $4.02115$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 14·11-s − 4·16-s − 20·29-s + 4·31-s + 14·41-s − 14·44-s + 9·49-s − 22·59-s + 6·61-s − 5·64-s + 32·71-s − 4·79-s + 48·89-s − 6·101-s − 26·109-s − 20·116-s + 85·121-s + 4·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  + 1/2·4-s − 4.22·11-s − 16-s − 3.71·29-s + 0.718·31-s + 2.18·41-s − 2.11·44-s + 9/7·49-s − 2.86·59-s + 0.768·61-s − 5/8·64-s + 3.79·71-s − 0.450·79-s + 5.08·89-s − 0.597·101-s − 2.49·109-s − 1.85·116-s + 7.72·121-s + 0.359·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{16} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(68361.0\)
Root analytic conductor: \(4.02115\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{16} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.025097891\)
\(L(\frac12)\) \(\approx\) \(1.025097891\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$D_4\times C_2$ \( 1 - T^{2} + 5 T^{4} - p^{2} T^{6} + p^{4} T^{8} \)
7$D_4\times C_2$ \( 1 - 9 T^{2} + 37 T^{4} - 9 p^{2} T^{6} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 + 7 T + 31 T^{2} + 7 p T^{3} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 41 T^{2} + 729 T^{4} - 41 p^{2} T^{6} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 - 61 T^{2} + 1505 T^{4} - 61 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 29 T^{2} + 1005 T^{4} - 29 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 + 10 T + 70 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - 2 T + 11 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 65 T^{2} + 2361 T^{4} - 65 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 7 T + 91 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 53 T^{2} + 3669 T^{4} - 53 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 82 T^{2} + 5891 T^{4} - 82 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 25 T^{2} + 1793 T^{4} - 25 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 + 11 T + 145 T^{2} + 11 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 3 T + 121 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 234 T^{2} + 22459 T^{4} - 234 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 - 16 T + 193 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 194 T^{2} + 18195 T^{4} - 194 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 + 2 T + 146 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 85 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - 190 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.43122171572815243172044200809, −6.36905518116049439960293597428, −6.20218930272920820786885564510, −5.73831721320107953240381115629, −5.56705892234801780091448150820, −5.42058170492753703990040132583, −5.20239204024948086474990512082, −5.12509252786266704348988130238, −4.91469231894279124640065687653, −4.79792490223273012707435783205, −4.24584732698004990495017217789, −4.06154291239750891742648637693, −3.94316841742954383791980346322, −3.70392715835056095711732195822, −3.34421537994002317136287657629, −2.96271982256561094231781750768, −2.77808129847246305525255870913, −2.64846090073802815257012922264, −2.41957268030263424394932881204, −2.13910819870554293294759976535, −1.85799974831376001280034916562, −1.81882972709373966295922788506, −1.02018502319151761949563514793, −0.52891907312726246828577165034, −0.26062051214093071115293430640, 0.26062051214093071115293430640, 0.52891907312726246828577165034, 1.02018502319151761949563514793, 1.81882972709373966295922788506, 1.85799974831376001280034916562, 2.13910819870554293294759976535, 2.41957268030263424394932881204, 2.64846090073802815257012922264, 2.77808129847246305525255870913, 2.96271982256561094231781750768, 3.34421537994002317136287657629, 3.70392715835056095711732195822, 3.94316841742954383791980346322, 4.06154291239750891742648637693, 4.24584732698004990495017217789, 4.79792490223273012707435783205, 4.91469231894279124640065687653, 5.12509252786266704348988130238, 5.20239204024948086474990512082, 5.42058170492753703990040132583, 5.56705892234801780091448150820, 5.73831721320107953240381115629, 6.20218930272920820786885564510, 6.36905518116049439960293597428, 6.43122171572815243172044200809

Graph of the $Z$-function along the critical line