Properties

Label 8-444e4-1.1-c1e4-0-1
Degree $8$
Conductor $38862602496$
Sign $1$
Analytic cond. $157.993$
Root an. cond. $1.88291$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·9-s + 4·13-s − 16·19-s − 8·31-s + 20·37-s − 16·43-s − 4·49-s + 28·61-s + 8·79-s + 27·81-s + 28·97-s + 40·103-s + 4·109-s − 24·117-s − 44·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8·169-s + 96·171-s + 173-s + ⋯
L(s)  = 1  − 2·9-s + 1.10·13-s − 3.67·19-s − 1.43·31-s + 3.28·37-s − 2.43·43-s − 4/7·49-s + 3.58·61-s + 0.900·79-s + 3·81-s + 2.84·97-s + 3.94·103-s + 0.383·109-s − 2.21·117-s − 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 8/13·169-s + 7.34·171-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 37^{4}\)
Sign: $1$
Analytic conductor: \(157.993\)
Root analytic conductor: \(1.88291\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 37^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7052120591\)
\(L(\frac12)\) \(\approx\) \(0.7052120591\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \) 4.5.a_a_a_by
7$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \) 4.7.a_e_a_dy
11$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.11.a_bs_a_bby
13$C_2$$\times$$C_2^2$ \( ( 1 - 2 T + p T^{2} )^{2}( 1 - 22 T^{2} + p^{2} T^{4} ) \) 4.13.ae_i_bk_amk
17$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \) 4.17.a_a_a_wg
19$C_2$$\times$$C_2^2$ \( ( 1 + 8 T + p T^{2} )^{2}( 1 + 26 T^{2} + p^{2} T^{4} ) \) 4.19.q_ey_bbs_ezu
23$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \) 4.23.a_a_a_bos
29$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \) 4.29.a_a_a_cms
31$C_2$$\times$$C_2^2$ \( ( 1 + 4 T + p T^{2} )^{2}( 1 - 46 T^{2} + p^{2} T^{4} ) \) 4.31.i_bg_aeq_acmc
41$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.41.a_gi_a_oxy
43$C_2$$\times$$C_2^2$ \( ( 1 + 8 T + p T^{2} )^{2}( 1 - 22 T^{2} + p^{2} T^{4} ) \) 4.43.q_ey_my_pi
47$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.47.a_ahg_a_tpu
53$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.53.a_aie_a_yyg
59$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \) 4.59.a_a_a_khu
61$C_2$$\times$$C_2^2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 74 T^{2} + p^{2} T^{4} ) \) 4.61.abc_pc_afpk_btvi
67$C_2^2$ \( ( 1 + 122 T^{2} + p^{2} T^{4} )^{2} \) 4.67.a_jk_a_bjhu
71$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.71.a_aky_a_bsti
73$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \) 4.73.a_ado_a_sxi
79$C_2$$\times$$C_2^2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 - 142 T^{2} + p^{2} T^{4} ) \) 4.79.ai_bg_tk_ascg
83$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.83.a_amu_a_cjdu
89$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \) 4.89.a_a_a_xli
97$C_2$$\times$$C_2^2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 2 T^{2} + p^{2} T^{4} ) \) 4.97.abc_pc_aecq_bczu
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.121018374979836109623625924393, −7.84381486968434112143157597117, −7.80464200683867183147098572149, −7.42702986091449735857314617454, −6.83306912568438797047703823163, −6.65437099763126580942894701983, −6.53397041892081126124094409566, −6.25228262033485203933217489929, −6.13629005715920118926255702671, −5.97475483929843681934793661730, −5.43946976352792035550145054328, −5.35053099334061609816908453183, −5.03191405785265011562290557908, −4.62266596664040337141551898971, −4.50935003856798378118467835069, −3.97864743980852044947191244695, −3.74069099374504300200137465317, −3.55728559248602678271593426072, −3.35463673912773952847432490018, −2.55232849460477640372081045369, −2.42177172426919177307168989860, −2.34264823937798931907499410302, −1.81140915550003515510116415230, −1.12041197563818132412706438004, −0.31506473622181132043367193386, 0.31506473622181132043367193386, 1.12041197563818132412706438004, 1.81140915550003515510116415230, 2.34264823937798931907499410302, 2.42177172426919177307168989860, 2.55232849460477640372081045369, 3.35463673912773952847432490018, 3.55728559248602678271593426072, 3.74069099374504300200137465317, 3.97864743980852044947191244695, 4.50935003856798378118467835069, 4.62266596664040337141551898971, 5.03191405785265011562290557908, 5.35053099334061609816908453183, 5.43946976352792035550145054328, 5.97475483929843681934793661730, 6.13629005715920118926255702671, 6.25228262033485203933217489929, 6.53397041892081126124094409566, 6.65437099763126580942894701983, 6.83306912568438797047703823163, 7.42702986091449735857314617454, 7.80464200683867183147098572149, 7.84381486968434112143157597117, 8.121018374979836109623625924393

Graph of the $Z$-function along the critical line