Properties

Label 8-432e4-1.1-c5e4-0-1
Degree $8$
Conductor $34828517376$
Sign $1$
Analytic cond. $2.30450\times 10^{7}$
Root an. cond. $8.32380$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 54·5-s − 74·7-s − 78·11-s + 1.10e3·13-s − 984·17-s + 3.28e3·19-s − 5.53e3·23-s + 6.11e3·25-s + 3.89e3·29-s − 4.71e3·31-s − 3.99e3·35-s − 9.59e3·37-s − 1.53e4·41-s − 3.28e4·43-s + 2.49e4·47-s + 3.47e4·49-s + 3.26e4·53-s − 4.21e3·55-s + 2.19e4·59-s + 3.05e3·61-s + 5.97e4·65-s − 3.67e4·67-s − 1.47e5·71-s − 1.02e5·73-s + 5.77e3·77-s + 1.49e4·79-s + 9.07e4·83-s + ⋯
L(s)  = 1  + 0.965·5-s − 0.570·7-s − 0.194·11-s + 1.81·13-s − 0.825·17-s + 2.08·19-s − 2.18·23-s + 1.95·25-s + 0.859·29-s − 0.881·31-s − 0.551·35-s − 1.15·37-s − 1.42·41-s − 2.71·43-s + 1.64·47-s + 2.06·49-s + 1.59·53-s − 0.187·55-s + 0.821·59-s + 0.104·61-s + 1.75·65-s − 1.00·67-s − 3.47·71-s − 2.24·73-s + 0.110·77-s + 0.269·79-s + 1.44·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{12}\)
Sign: $1$
Analytic conductor: \(2.30450\times 10^{7}\)
Root analytic conductor: \(8.32380\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{12} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(1.030362465\)
\(L(\frac12)\) \(\approx\) \(1.030362465\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$D_4\times C_2$ \( 1 - 54 T - 3199 T^{2} + 1458 p T^{3} + 740604 p^{2} T^{4} + 1458 p^{6} T^{5} - 3199 p^{10} T^{6} - 54 p^{15} T^{7} + p^{20} T^{8} \)
7$D_4\times C_2$ \( 1 + 74 T - 29291 T^{2} + 85322 T^{3} + 834233908 T^{4} + 85322 p^{5} T^{5} - 29291 p^{10} T^{6} + 74 p^{15} T^{7} + p^{20} T^{8} \)
11$D_4\times C_2$ \( 1 + 78 T + 81845 T^{2} - 31033314 T^{3} - 21177529764 T^{4} - 31033314 p^{5} T^{5} + 81845 p^{10} T^{6} + 78 p^{15} T^{7} + p^{20} T^{8} \)
13$D_4\times C_2$ \( 1 - 1106 T + 261241 T^{2} - 242666354 T^{3} + 333396924028 T^{4} - 242666354 p^{5} T^{5} + 261241 p^{10} T^{6} - 1106 p^{15} T^{7} + p^{20} T^{8} \)
17$D_{4}$ \( ( 1 + 492 T + 991654 T^{2} + 492 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 - 1640 T + 2303382 T^{2} - 1640 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 + 5538 T + 10264397 T^{2} + 41714215218 T^{3} + 177540370655268 T^{4} + 41714215218 p^{5} T^{5} + 10264397 p^{10} T^{6} + 5538 p^{15} T^{7} + p^{20} T^{8} \)
29$D_4\times C_2$ \( 1 - 3894 T - 26328655 T^{2} - 1828595142 T^{3} + 989854392537516 T^{4} - 1828595142 p^{5} T^{5} - 26328655 p^{10} T^{6} - 3894 p^{15} T^{7} + p^{20} T^{8} \)
31$D_4\times C_2$ \( 1 + 4718 T + 308941 T^{2} - 166581818242 T^{3} - 975071466725036 T^{4} - 166581818242 p^{5} T^{5} + 308941 p^{10} T^{6} + 4718 p^{15} T^{7} + p^{20} T^{8} \)
37$D_{4}$ \( ( 1 + 4796 T - 2933298 T^{2} + 4796 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 + 15354 T - 54861079 T^{2} + 904258368522 T^{3} + 43716860789439108 T^{4} + 904258368522 p^{5} T^{5} - 54861079 p^{10} T^{6} + 15354 p^{15} T^{7} + p^{20} T^{8} \)
43$D_4\times C_2$ \( 1 + 32858 T + 531117661 T^{2} + 8362808427386 T^{3} + 120556834830700108 T^{4} + 8362808427386 p^{5} T^{5} + 531117661 p^{10} T^{6} + 32858 p^{15} T^{7} + p^{20} T^{8} \)
47$D_4\times C_2$ \( 1 - 24954 T + 21728789 T^{2} - 3550537792602 T^{3} + 165756186376684068 T^{4} - 3550537792602 p^{5} T^{5} + 21728789 p^{10} T^{6} - 24954 p^{15} T^{7} + p^{20} T^{8} \)
53$D_{4}$ \( ( 1 - 16332 T + 896230798 T^{2} - 16332 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 21966 T - 1047077995 T^{2} - 2190769191198 T^{3} + 1483553202105261756 T^{4} - 2190769191198 p^{5} T^{5} - 1047077995 p^{10} T^{6} - 21966 p^{15} T^{7} + p^{20} T^{8} \)
61$D_4\times C_2$ \( 1 - 50 p T - 1573942703 T^{2} + 5297369950 p T^{3} + 1785465604069576108 T^{4} + 5297369950 p^{6} T^{5} - 1573942703 p^{10} T^{6} - 50 p^{16} T^{7} + p^{20} T^{8} \)
67$D_4\times C_2$ \( 1 + 36758 T - 1083763235 T^{2} - 145570685710 p T^{3} + 508296971311036 p^{2} T^{4} - 145570685710 p^{6} T^{5} - 1083763235 p^{10} T^{6} + 36758 p^{15} T^{7} + p^{20} T^{8} \)
71$D_{4}$ \( ( 1 + 73848 T + 4273554814 T^{2} + 73848 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
73$D_{4}$ \( ( 1 + 51188 T + 63530214 p T^{2} + 51188 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 - 14926 T - 5879056307 T^{2} + 780197169890 T^{3} + 27078673587607710964 T^{4} + 780197169890 p^{5} T^{5} - 5879056307 p^{10} T^{6} - 14926 p^{15} T^{7} + p^{20} T^{8} \)
83$D_4\times C_2$ \( 1 - 90762 T - 1695108259 T^{2} - 186494818454154 T^{3} + 50696650939413455868 T^{4} - 186494818454154 p^{5} T^{5} - 1695108259 p^{10} T^{6} - 90762 p^{15} T^{7} + p^{20} T^{8} \)
89$D_{4}$ \( ( 1 - 9300 T + 3189231862 T^{2} - 9300 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 + 30262 T - 7152864215 T^{2} - 275566608895610 T^{3} - 16503442419968593676 T^{4} - 275566608895610 p^{5} T^{5} - 7152864215 p^{10} T^{6} + 30262 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.15552441453386239121755682620, −7.04384603439816314028448248819, −6.75925660184475281632311049681, −6.36756875480586194601529345165, −6.24381068357868561332322678827, −5.86883472463105288831495993655, −5.84685971714768235267500753572, −5.51625452883672442864201498876, −5.31188242919802168078251237622, −4.97951681676600062764540217526, −4.72968626886020925910509699125, −4.30899847591089944077864391075, −4.12514404987323230213360765120, −3.63538649597978428483271414134, −3.58221488735042631938880753798, −3.18113321963369522285236867613, −3.00819568239761013687006573667, −2.66205905619777065858844835437, −2.15144645466713078970377273753, −1.97664939213123820205873901430, −1.62172799744288180644805272947, −1.23214187298665358604519347392, −1.05260604749095528519613960806, −0.62487644358620674471719532873, −0.10960073653371711652859082193, 0.10960073653371711652859082193, 0.62487644358620674471719532873, 1.05260604749095528519613960806, 1.23214187298665358604519347392, 1.62172799744288180644805272947, 1.97664939213123820205873901430, 2.15144645466713078970377273753, 2.66205905619777065858844835437, 3.00819568239761013687006573667, 3.18113321963369522285236867613, 3.58221488735042631938880753798, 3.63538649597978428483271414134, 4.12514404987323230213360765120, 4.30899847591089944077864391075, 4.72968626886020925910509699125, 4.97951681676600062764540217526, 5.31188242919802168078251237622, 5.51625452883672442864201498876, 5.84685971714768235267500753572, 5.86883472463105288831495993655, 6.24381068357868561332322678827, 6.36756875480586194601529345165, 6.75925660184475281632311049681, 7.04384603439816314028448248819, 7.15552441453386239121755682620

Graph of the $Z$-function along the critical line