L(s) = 1 | + 3·9-s − 4·13-s + 14·17-s − 4·25-s + 10·29-s + 18·37-s − 6·41-s − 5·49-s + 16·53-s − 6·61-s + 9·81-s + 6·89-s + 30·97-s − 34·101-s − 10·113-s − 12·117-s + 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 42·153-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 9-s − 1.10·13-s + 3.39·17-s − 4/5·25-s + 1.85·29-s + 2.95·37-s − 0.937·41-s − 5/7·49-s + 2.19·53-s − 0.768·61-s + 81-s + 0.635·89-s + 3.04·97-s − 3.38·101-s − 0.940·113-s − 1.10·117-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 3.39·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=((220⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((220⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
220⋅134
|
Sign: |
1
|
Analytic conductor: |
121.753 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 220⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.053796956 |
L(21) |
≈ |
3.053796956 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C2 | (1+2T+pT2)2 |
good | 3 | C2×C22 | (1−pT2)2(1+pT2+p2T4) |
| 5 | C22 | (1+2T2+p2T4)2 |
| 7 | C23 | 1+5T2−24T4+5p2T6+p4T8 |
| 11 | C23 | 1−3T2−112T4−3p2T6+p4T8 |
| 17 | C22 | (1−7T+32T2−7pT3+p2T4)2 |
| 19 | C23 | 1+13T2−192T4+13p2T6+p4T8 |
| 23 | C23 | 1−19T2−168T4−19p2T6+p4T8 |
| 29 | C22 | (1−5T−4T2−5pT3+p2T4)2 |
| 31 | C22 | (1−58T2+p2T4)2 |
| 37 | C2 | (1−10T+pT2)2(1+T+pT2)2 |
| 41 | C22 | (1+3T+44T2+3pT3+p2T4)2 |
| 43 | C23 | 1−59T2+1632T4−59p2T6+p4T8 |
| 47 | C22 | (1−78T2+p2T4)2 |
| 53 | C2 | (1−4T+pT2)4 |
| 59 | C23 | 1+69T2+1280T4+69p2T6+p4T8 |
| 61 | C22 | (1+3T−52T2+3pT3+p2T4)2 |
| 67 | C23 | 1+125T2+11136T4+125p2T6+p4T8 |
| 71 | C23 | 1+93T2+3608T4+93p2T6+p4T8 |
| 73 | C22 | (1−134T2+p2T4)2 |
| 79 | C22 | (1+146T2+p2T4)2 |
| 83 | C22 | (1+30T2+p2T4)2 |
| 89 | C22 | (1−3T+92T2−3pT3+p2T4)2 |
| 97 | C22 | (1−15T+172T2−15pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.85999433137825841238346958449, −7.84837922966356476336148971811, −7.67431865783985467018022019400, −7.65184186003859798424435421020, −7.09480649625657389865806807161, −7.00133026286185184359867541163, −6.55885706918457310138539892417, −6.43284603740802420437548879113, −6.18570872055557231223196832515, −5.69139142263664641777595746280, −5.51169308262128402487868568562, −5.50461241793743242696247178041, −4.99253488121029589828855222896, −4.69551890972061568647975851003, −4.55274025705988453260866714081, −4.19300724258586834100372526043, −3.77900151792917559691653252644, −3.64303988130129048774757290899, −3.13280708837345839580850573153, −2.93104039303353373560077906867, −2.54894164571844234500184399434, −2.20001653520271263739376382071, −1.57833498637778882692703617024, −1.11471873287324465725549016299, −0.797184005518751079591302016406,
0.797184005518751079591302016406, 1.11471873287324465725549016299, 1.57833498637778882692703617024, 2.20001653520271263739376382071, 2.54894164571844234500184399434, 2.93104039303353373560077906867, 3.13280708837345839580850573153, 3.64303988130129048774757290899, 3.77900151792917559691653252644, 4.19300724258586834100372526043, 4.55274025705988453260866714081, 4.69551890972061568647975851003, 4.99253488121029589828855222896, 5.50461241793743242696247178041, 5.51169308262128402487868568562, 5.69139142263664641777595746280, 6.18570872055557231223196832515, 6.43284603740802420437548879113, 6.55885706918457310138539892417, 7.00133026286185184359867541163, 7.09480649625657389865806807161, 7.65184186003859798424435421020, 7.67431865783985467018022019400, 7.84837922966356476336148971811, 7.85999433137825841238346958449