L(s) = 1 | − 2·3-s + 6·7-s + 5·9-s − 2·11-s − 4·13-s + 6·17-s + 6·19-s − 12·21-s − 6·23-s − 4·25-s − 10·27-s − 6·29-s + 4·33-s − 2·37-s + 8·39-s + 6·41-s − 6·43-s − 24·47-s + 21·49-s − 12·51-s − 12·57-s + 6·59-s − 14·61-s + 30·63-s + 18·67-s + 12·69-s − 6·71-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 2.26·7-s + 5/3·9-s − 0.603·11-s − 1.10·13-s + 1.45·17-s + 1.37·19-s − 2.61·21-s − 1.25·23-s − 4/5·25-s − 1.92·27-s − 1.11·29-s + 0.696·33-s − 0.328·37-s + 1.28·39-s + 0.937·41-s − 0.914·43-s − 3.50·47-s + 3·49-s − 1.68·51-s − 1.58·57-s + 0.781·59-s − 1.79·61-s + 3.77·63-s + 2.19·67-s + 1.44·69-s − 0.712·71-s + ⋯ |
Λ(s)=(=((220⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((220⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
220⋅134
|
Sign: |
1
|
Analytic conductor: |
121.753 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 220⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.836494168 |
L(21) |
≈ |
1.836494168 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C2 | (1+2T+pT2)2 |
good | 3 | D4×C2 | 1+2T−T2−2T3+4T4−2pT5−p2T6+2p3T7+p4T8 |
| 5 | C22 | (1+2T2+p2T4)2 |
| 7 | D4×C2 | 1−6T+15T2−6pT3+20pT4−6p2T5+15p2T6−6p3T7+p4T8 |
| 11 | D4×C2 | 1+2T−T2−34T3−140T4−34pT5−p2T6+2p3T7+p4T8 |
| 17 | D4×C2 | 1−6T+T2−6T3+324T4−6pT5+p2T6−6p3T7+p4T8 |
| 19 | D4×C2 | 1−6T+7T2+54T3−204T4+54pT5+7p2T6−6p3T7+p4T8 |
| 23 | D4×C2 | 1+6T−T2−54T3+12T4−54pT5−p2T6+6p3T7+p4T8 |
| 29 | D4×C2 | 1+6T+T2−138T3−660T4−138pT5+p2T6+6p3T7+p4T8 |
| 31 | C22 | (1+30T2+p2T4)2 |
| 37 | D4×C2 | 1+2T+T2−142T3−1508T4−142pT5+p2T6+2p3T7+p4T8 |
| 41 | D4×C2 | 1−6T−47T2−6T3+3732T4−6pT5−47p2T6−6p3T7+p4T8 |
| 43 | D4×C2 | 1+6T−9T2−246T3−1372T4−246pT5−9p2T6+6p3T7+p4T8 |
| 47 | C2 | (1+6T+pT2)4 |
| 53 | C22 | (1+98T2+p2T4)2 |
| 59 | D4×C2 | 1−6T−73T2+54T3+6276T4+54pT5−73p2T6−6p3T7+p4T8 |
| 61 | C22 | (1+7T−12T2+7pT3+p2T4)2 |
| 67 | D4×C2 | 1−18T+127T2−1134T3+12612T4−1134pT5+127p2T6−18p3T7+p4T8 |
| 71 | D4×C2 | 1+6T−97T2−54T3+10092T4−54pT5−97p2T6+6p3T7+p4T8 |
| 73 | D4 | (1−8T+90T2−8pT3+p2T4)2 |
| 79 | C2 | (1−6T+pT2)4 |
| 83 | C2 | (1+4T+pT2)4 |
| 89 | D4×C2 | 1−18T+97T2−882T3+14772T4−882pT5+97p2T6−18p3T7+p4T8 |
| 97 | C22 | (1−9T−16T2−9pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.020247026217916835361788042620, −7.890454310843357315933530154568, −7.76604895823585456810387293220, −7.32545419090055812618387222217, −7.17435001523400540384268839752, −7.16301982154919587188416679669, −6.44681822157245728736762298299, −6.43386664599844950863617194973, −6.10644366400052375453825882071, −5.60551626322680876268635154308, −5.48198528747405048092641515389, −5.35031050011928999273122749769, −5.03758832816359361039200034102, −4.85611813310988074459383364679, −4.66746644552499408139395255332, −4.25630128671750165758581541419, −4.02518619012058607441005479869, −3.46648177626219165005588939596, −3.39697408338966575749145793737, −2.97781434624446805719630255174, −2.04460082587664742649847813553, −1.92858244175304535860187854915, −1.92262402817580827586058454024, −1.18902363818117412411488506714, −0.59675671118218918460236937320,
0.59675671118218918460236937320, 1.18902363818117412411488506714, 1.92262402817580827586058454024, 1.92858244175304535860187854915, 2.04460082587664742649847813553, 2.97781434624446805719630255174, 3.39697408338966575749145793737, 3.46648177626219165005588939596, 4.02518619012058607441005479869, 4.25630128671750165758581541419, 4.66746644552499408139395255332, 4.85611813310988074459383364679, 5.03758832816359361039200034102, 5.35031050011928999273122749769, 5.48198528747405048092641515389, 5.60551626322680876268635154308, 6.10644366400052375453825882071, 6.43386664599844950863617194973, 6.44681822157245728736762298299, 7.16301982154919587188416679669, 7.17435001523400540384268839752, 7.32545419090055812618387222217, 7.76604895823585456810387293220, 7.890454310843357315933530154568, 8.020247026217916835361788042620