Properties

Label 8-416e4-1.1-c1e4-0-4
Degree 88
Conductor 2994837913629948379136
Sign 11
Analytic cond. 121.753121.753
Root an. cond. 1.822571.82257
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 6·7-s + 5·9-s − 2·11-s − 4·13-s + 6·17-s + 6·19-s − 12·21-s − 6·23-s − 4·25-s − 10·27-s − 6·29-s + 4·33-s − 2·37-s + 8·39-s + 6·41-s − 6·43-s − 24·47-s + 21·49-s − 12·51-s − 12·57-s + 6·59-s − 14·61-s + 30·63-s + 18·67-s + 12·69-s − 6·71-s + ⋯
L(s)  = 1  − 1.15·3-s + 2.26·7-s + 5/3·9-s − 0.603·11-s − 1.10·13-s + 1.45·17-s + 1.37·19-s − 2.61·21-s − 1.25·23-s − 4/5·25-s − 1.92·27-s − 1.11·29-s + 0.696·33-s − 0.328·37-s + 1.28·39-s + 0.937·41-s − 0.914·43-s − 3.50·47-s + 3·49-s − 1.68·51-s − 1.58·57-s + 0.781·59-s − 1.79·61-s + 3.77·63-s + 2.19·67-s + 1.44·69-s − 0.712·71-s + ⋯

Functional equation

Λ(s)=((220134)s/2ΓC(s)4L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((220134)s/2ΓC(s+1/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 2201342^{20} \cdot 13^{4}
Sign: 11
Analytic conductor: 121.753121.753
Root analytic conductor: 1.822571.82257
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 220134, ( :1/2,1/2,1/2,1/2), 1)(8,\ 2^{20} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )

Particular Values

L(1)L(1) \approx 1.8364941681.836494168
L(12)L(\frac12) \approx 1.8364941681.836494168
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
13C2C_2 (1+2T+pT2)2 ( 1 + 2 T + p T^{2} )^{2}
good3D4×C2D_4\times C_2 1+2TT22T3+4T42pT5p2T6+2p3T7+p4T8 1 + 2 T - T^{2} - 2 T^{3} + 4 T^{4} - 2 p T^{5} - p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8}
5C22C_2^2 (1+2T2+p2T4)2 ( 1 + 2 T^{2} + p^{2} T^{4} )^{2}
7D4×C2D_4\times C_2 16T+15T26pT3+20pT46p2T5+15p2T66p3T7+p4T8 1 - 6 T + 15 T^{2} - 6 p T^{3} + 20 p T^{4} - 6 p^{2} T^{5} + 15 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8}
11D4×C2D_4\times C_2 1+2TT234T3140T434pT5p2T6+2p3T7+p4T8 1 + 2 T - T^{2} - 34 T^{3} - 140 T^{4} - 34 p T^{5} - p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8}
17D4×C2D_4\times C_2 16T+T26T3+324T46pT5+p2T66p3T7+p4T8 1 - 6 T + T^{2} - 6 T^{3} + 324 T^{4} - 6 p T^{5} + p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8}
19D4×C2D_4\times C_2 16T+7T2+54T3204T4+54pT5+7p2T66p3T7+p4T8 1 - 6 T + 7 T^{2} + 54 T^{3} - 204 T^{4} + 54 p T^{5} + 7 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8}
23D4×C2D_4\times C_2 1+6TT254T3+12T454pT5p2T6+6p3T7+p4T8 1 + 6 T - T^{2} - 54 T^{3} + 12 T^{4} - 54 p T^{5} - p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8}
29D4×C2D_4\times C_2 1+6T+T2138T3660T4138pT5+p2T6+6p3T7+p4T8 1 + 6 T + T^{2} - 138 T^{3} - 660 T^{4} - 138 p T^{5} + p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8}
31C22C_2^2 (1+30T2+p2T4)2 ( 1 + 30 T^{2} + p^{2} T^{4} )^{2}
37D4×C2D_4\times C_2 1+2T+T2142T31508T4142pT5+p2T6+2p3T7+p4T8 1 + 2 T + T^{2} - 142 T^{3} - 1508 T^{4} - 142 p T^{5} + p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8}
41D4×C2D_4\times C_2 16T47T26T3+3732T46pT547p2T66p3T7+p4T8 1 - 6 T - 47 T^{2} - 6 T^{3} + 3732 T^{4} - 6 p T^{5} - 47 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8}
43D4×C2D_4\times C_2 1+6T9T2246T31372T4246pT59p2T6+6p3T7+p4T8 1 + 6 T - 9 T^{2} - 246 T^{3} - 1372 T^{4} - 246 p T^{5} - 9 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8}
47C2C_2 (1+6T+pT2)4 ( 1 + 6 T + p T^{2} )^{4}
53C22C_2^2 (1+98T2+p2T4)2 ( 1 + 98 T^{2} + p^{2} T^{4} )^{2}
59D4×C2D_4\times C_2 16T73T2+54T3+6276T4+54pT573p2T66p3T7+p4T8 1 - 6 T - 73 T^{2} + 54 T^{3} + 6276 T^{4} + 54 p T^{5} - 73 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8}
61C22C_2^2 (1+7T12T2+7pT3+p2T4)2 ( 1 + 7 T - 12 T^{2} + 7 p T^{3} + p^{2} T^{4} )^{2}
67D4×C2D_4\times C_2 118T+127T21134T3+12612T41134pT5+127p2T618p3T7+p4T8 1 - 18 T + 127 T^{2} - 1134 T^{3} + 12612 T^{4} - 1134 p T^{5} + 127 p^{2} T^{6} - 18 p^{3} T^{7} + p^{4} T^{8}
71D4×C2D_4\times C_2 1+6T97T254T3+10092T454pT597p2T6+6p3T7+p4T8 1 + 6 T - 97 T^{2} - 54 T^{3} + 10092 T^{4} - 54 p T^{5} - 97 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8}
73D4D_{4} (18T+90T28pT3+p2T4)2 ( 1 - 8 T + 90 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2}
79C2C_2 (16T+pT2)4 ( 1 - 6 T + p T^{2} )^{4}
83C2C_2 (1+4T+pT2)4 ( 1 + 4 T + p T^{2} )^{4}
89D4×C2D_4\times C_2 118T+97T2882T3+14772T4882pT5+97p2T618p3T7+p4T8 1 - 18 T + 97 T^{2} - 882 T^{3} + 14772 T^{4} - 882 p T^{5} + 97 p^{2} T^{6} - 18 p^{3} T^{7} + p^{4} T^{8}
97C22C_2^2 (19T16T29pT3+p2T4)2 ( 1 - 9 T - 16 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.020247026217916835361788042620, −7.890454310843357315933530154568, −7.76604895823585456810387293220, −7.32545419090055812618387222217, −7.17435001523400540384268839752, −7.16301982154919587188416679669, −6.44681822157245728736762298299, −6.43386664599844950863617194973, −6.10644366400052375453825882071, −5.60551626322680876268635154308, −5.48198528747405048092641515389, −5.35031050011928999273122749769, −5.03758832816359361039200034102, −4.85611813310988074459383364679, −4.66746644552499408139395255332, −4.25630128671750165758581541419, −4.02518619012058607441005479869, −3.46648177626219165005588939596, −3.39697408338966575749145793737, −2.97781434624446805719630255174, −2.04460082587664742649847813553, −1.92858244175304535860187854915, −1.92262402817580827586058454024, −1.18902363818117412411488506714, −0.59675671118218918460236937320, 0.59675671118218918460236937320, 1.18902363818117412411488506714, 1.92262402817580827586058454024, 1.92858244175304535860187854915, 2.04460082587664742649847813553, 2.97781434624446805719630255174, 3.39697408338966575749145793737, 3.46648177626219165005588939596, 4.02518619012058607441005479869, 4.25630128671750165758581541419, 4.66746644552499408139395255332, 4.85611813310988074459383364679, 5.03758832816359361039200034102, 5.35031050011928999273122749769, 5.48198528747405048092641515389, 5.60551626322680876268635154308, 6.10644366400052375453825882071, 6.43386664599844950863617194973, 6.44681822157245728736762298299, 7.16301982154919587188416679669, 7.17435001523400540384268839752, 7.32545419090055812618387222217, 7.76604895823585456810387293220, 7.890454310843357315933530154568, 8.020247026217916835361788042620

Graph of the ZZ-function along the critical line