L(s) = 1 | + 2·3-s − 6·7-s + 5·9-s + 2·11-s − 4·13-s + 6·17-s − 6·19-s − 12·21-s + 6·23-s − 4·25-s + 10·27-s − 6·29-s + 4·33-s − 2·37-s − 8·39-s + 6·41-s + 6·43-s + 24·47-s + 21·49-s + 12·51-s − 12·57-s − 6·59-s − 14·61-s − 30·63-s − 18·67-s + 12·69-s + 6·71-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 2.26·7-s + 5/3·9-s + 0.603·11-s − 1.10·13-s + 1.45·17-s − 1.37·19-s − 2.61·21-s + 1.25·23-s − 4/5·25-s + 1.92·27-s − 1.11·29-s + 0.696·33-s − 0.328·37-s − 1.28·39-s + 0.937·41-s + 0.914·43-s + 3.50·47-s + 3·49-s + 1.68·51-s − 1.58·57-s − 0.781·59-s − 1.79·61-s − 3.77·63-s − 2.19·67-s + 1.44·69-s + 0.712·71-s + ⋯ |
Λ(s)=(=((220⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((220⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
220⋅134
|
Sign: |
1
|
Analytic conductor: |
121.753 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 220⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.299402127 |
L(21) |
≈ |
2.299402127 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C2 | (1+2T+pT2)2 |
good | 3 | D4×C2 | 1−2T−T2+2T3+4T4+2pT5−p2T6−2p3T7+p4T8 |
| 5 | C22 | (1+2T2+p2T4)2 |
| 7 | D4×C2 | 1+6T+15T2+6pT3+20pT4+6p2T5+15p2T6+6p3T7+p4T8 |
| 11 | D4×C2 | 1−2T−T2+34T3−140T4+34pT5−p2T6−2p3T7+p4T8 |
| 17 | D4×C2 | 1−6T+T2−6T3+324T4−6pT5+p2T6−6p3T7+p4T8 |
| 19 | D4×C2 | 1+6T+7T2−54T3−204T4−54pT5+7p2T6+6p3T7+p4T8 |
| 23 | D4×C2 | 1−6T−T2+54T3+12T4+54pT5−p2T6−6p3T7+p4T8 |
| 29 | D4×C2 | 1+6T+T2−138T3−660T4−138pT5+p2T6+6p3T7+p4T8 |
| 31 | C22 | (1+30T2+p2T4)2 |
| 37 | D4×C2 | 1+2T+T2−142T3−1508T4−142pT5+p2T6+2p3T7+p4T8 |
| 41 | D4×C2 | 1−6T−47T2−6T3+3732T4−6pT5−47p2T6−6p3T7+p4T8 |
| 43 | D4×C2 | 1−6T−9T2+246T3−1372T4+246pT5−9p2T6−6p3T7+p4T8 |
| 47 | C2 | (1−6T+pT2)4 |
| 53 | C22 | (1+98T2+p2T4)2 |
| 59 | D4×C2 | 1+6T−73T2−54T3+6276T4−54pT5−73p2T6+6p3T7+p4T8 |
| 61 | C22 | (1+7T−12T2+7pT3+p2T4)2 |
| 67 | D4×C2 | 1+18T+127T2+1134T3+12612T4+1134pT5+127p2T6+18p3T7+p4T8 |
| 71 | D4×C2 | 1−6T−97T2+54T3+10092T4+54pT5−97p2T6−6p3T7+p4T8 |
| 73 | D4 | (1−8T+90T2−8pT3+p2T4)2 |
| 79 | C2 | (1+6T+pT2)4 |
| 83 | C2 | (1−4T+pT2)4 |
| 89 | D4×C2 | 1−18T+97T2−882T3+14772T4−882pT5+97p2T6−18p3T7+p4T8 |
| 97 | C22 | (1−9T−16T2−9pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.122432780260744564128465704578, −7.903609832611024544152735507094, −7.36033793133985790473398221516, −7.35168825284763161452944805537, −7.33462485768820063904887853516, −7.11120684372679080316926938719, −6.46960408175150434653360802389, −6.39630901918497497806049190205, −6.38828120616388474176376717509, −5.81696401799114879105412283180, −5.67336017977472620843637260124, −5.45303269820738617530664008474, −4.92692760236152258859330306472, −4.67384186769032496677940069073, −4.26256629918312557751062620821, −4.04840041830719252535537556835, −3.71599974571601652190490860191, −3.70892945981940961946842011871, −3.07031960212961596442441316760, −2.96603595367112199857029046969, −2.47081857615985642349475466340, −2.44918310669262376538627162911, −1.76323639653083310184307739574, −1.25426686852587588783194986356, −0.54647633518433370662244596702,
0.54647633518433370662244596702, 1.25426686852587588783194986356, 1.76323639653083310184307739574, 2.44918310669262376538627162911, 2.47081857615985642349475466340, 2.96603595367112199857029046969, 3.07031960212961596442441316760, 3.70892945981940961946842011871, 3.71599974571601652190490860191, 4.04840041830719252535537556835, 4.26256629918312557751062620821, 4.67384186769032496677940069073, 4.92692760236152258859330306472, 5.45303269820738617530664008474, 5.67336017977472620843637260124, 5.81696401799114879105412283180, 6.38828120616388474176376717509, 6.39630901918497497806049190205, 6.46960408175150434653360802389, 7.11120684372679080316926938719, 7.33462485768820063904887853516, 7.35168825284763161452944805537, 7.36033793133985790473398221516, 7.903609832611024544152735507094, 8.122432780260744564128465704578