Properties

Label 8-416e4-1.1-c1e4-0-13
Degree $8$
Conductor $29948379136$
Sign $1$
Analytic cond. $121.753$
Root an. cond. $1.82257$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·9-s + 6·13-s − 2·17-s + 6·25-s + 10·29-s + 6·37-s + 30·41-s − 14·49-s − 28·53-s − 10·61-s + 9·81-s − 2·101-s + 14·113-s + 36·117-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 12·153-s + 157-s + 163-s + 167-s + 13·169-s + 173-s + ⋯
L(s)  = 1  + 2·9-s + 1.66·13-s − 0.485·17-s + 6/5·25-s + 1.85·29-s + 0.986·37-s + 4.68·41-s − 2·49-s − 3.84·53-s − 1.28·61-s + 81-s − 0.199·101-s + 1.31·113-s + 3.32·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.970·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(121.753\)
Root analytic conductor: \(1.82257\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.636013848\)
\(L(\frac12)\) \(\approx\) \(3.636013848\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13$C_2^2$ \( 1 - 6 T + 23 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
good3$C_2$ \( ( 1 - p T + p T^{2} )^{2}( 1 + p T + p T^{2} )^{2} \) 4.3.a_ag_a_bb
5$C_2^2$$\times$$C_2^2$ \( ( 1 - 2 T - T^{2} - 2 p T^{3} + p^{2} T^{4} )( 1 + 2 T - T^{2} + 2 p T^{3} + p^{2} T^{4} ) \) 4.5.a_ag_a_l
7$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \) 4.7.a_o_a_fr
11$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \) 4.11.a_w_a_nz
17$C_2$$\times$$C_2^2$ \( ( 1 + 2 T + p T^{2} )^{2}( 1 - 2 T - 13 T^{2} - 2 p T^{3} + p^{2} T^{4} ) \) 4.17.c_r_adq_ahg
19$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \) 4.19.a_bm_a_bpr
23$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \) 4.23.a_abu_a_cjb
29$C_2$$\times$$C_2^2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + 71 T^{2} + 10 p T^{3} + p^{2} T^{4} ) \) 4.29.ak_bd_afa_bya
31$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.31.a_aeu_a_inu
37$C_2$$\times$$C_2^2$ \( ( 1 - 2 T + p T^{2} )^{2}( 1 - 2 T - 33 T^{2} - 2 p T^{3} + p^{2} T^{4} ) \) 4.37.ag_cb_ajm_bdc
41$C_2$$\times$$C_2^2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 - 10 T + 59 T^{2} - 10 p T^{3} + p^{2} T^{4} ) \) 4.41.abe_qz_aggs_btdc
43$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \) 4.43.a_adi_a_ifj
47$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.47.a_ahg_a_tpu
53$C_2^2$ \( ( 1 + 14 T + 143 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \) 4.53.bc_so_idc_crhr
59$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \) 4.59.a_eo_a_plr
61$C_2$$\times$$C_2^2$ \( ( 1 + 10 T + p T^{2} )^{2}( 1 - 10 T + 39 T^{2} - 10 p T^{3} + p^{2} T^{4} ) \) 4.61.k_cj_abfy_amhg
67$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \) 4.67.a_fe_a_txz
71$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \) 4.71.a_fm_a_wjr
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T - 37 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T - 37 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \) 4.73.a_aeg_a_kal
79$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.79.a_me_a_cdkg
83$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.83.a_amu_a_cjdu
89$C_2^2$$\times$$C_2^2$ \( ( 1 - 10 T + 11 T^{2} - 10 p T^{3} + p^{2} T^{4} )( 1 + 10 T + 11 T^{2} + 10 p T^{3} + p^{2} T^{4} ) \) 4.89.a_ada_a_acsr
97$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 227 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 227 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \) 4.97.a_fa_a_lcd
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.169929807615416160718261935040, −7.74059588786200704492120809177, −7.59855117163470967035620267316, −7.48588712046640311094704436085, −7.29219810235253796228342838475, −6.62480667182633965886027969482, −6.53805630303022501468455193145, −6.53462858180101094425206049594, −6.17720038588316100483562527121, −6.07599093742603954502546340930, −5.56195258985323777672531005211, −5.36384947418099096545841531307, −4.87759031107550079982563514708, −4.51408967744472956544458037703, −4.39180383560068879847292043416, −4.29954025928313007303675151779, −4.17479591420528510662119255991, −3.40044887374521151770588375544, −3.17726959084472836402332748000, −3.04513201793027065213653358064, −2.54841385877402980666484322557, −2.03250315268136013875504077188, −1.56427351035748475399774000430, −1.17268683819402076011014987973, −0.873890291779436135434963020463, 0.873890291779436135434963020463, 1.17268683819402076011014987973, 1.56427351035748475399774000430, 2.03250315268136013875504077188, 2.54841385877402980666484322557, 3.04513201793027065213653358064, 3.17726959084472836402332748000, 3.40044887374521151770588375544, 4.17479591420528510662119255991, 4.29954025928313007303675151779, 4.39180383560068879847292043416, 4.51408967744472956544458037703, 4.87759031107550079982563514708, 5.36384947418099096545841531307, 5.56195258985323777672531005211, 6.07599093742603954502546340930, 6.17720038588316100483562527121, 6.53462858180101094425206049594, 6.53805630303022501468455193145, 6.62480667182633965886027969482, 7.29219810235253796228342838475, 7.48588712046640311094704436085, 7.59855117163470967035620267316, 7.74059588786200704492120809177, 8.169929807615416160718261935040

Graph of the $Z$-function along the critical line