L(s) = 1 | + 4·3-s − 2·9-s − 4·11-s − 8·19-s − 40·27-s − 16·33-s + 24·41-s − 32·57-s − 32·59-s − 12·67-s − 24·73-s − 55·81-s − 20·83-s − 8·89-s − 28·97-s + 8·99-s + 8·107-s + 16·113-s + 8·121-s + 96·123-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯ |
L(s) = 1 | + 2.30·3-s − 2/3·9-s − 1.20·11-s − 1.83·19-s − 7.69·27-s − 2.78·33-s + 3.74·41-s − 4.23·57-s − 4.16·59-s − 1.46·67-s − 2.80·73-s − 6.11·81-s − 2.19·83-s − 0.847·89-s − 2.84·97-s + 0.804·99-s + 0.773·107-s + 1.50·113-s + 8/11·121-s + 8.65·123-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯ |
Λ(s)=(=((220⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((220⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
220⋅134
|
Sign: |
1
|
Analytic conductor: |
121.753 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 220⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.5038997757 |
L(21) |
≈ |
0.5038997757 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C22 | 1+p2T4 |
good | 3 | C2 | (1−T+pT2)4 |
| 5 | C23 | 1−41T4+p4T8 |
| 7 | C23 | 1−97T4+p4T8 |
| 11 | C22 | (1+2T+2T2+2pT3+p2T4)2 |
| 17 | C22 | (1−25T2+p2T4)2 |
| 19 | C22 | (1+4T+8T2+4pT3+p2T4)2 |
| 23 | C22 | (1+20T2+p2T4)2 |
| 29 | C22 | (1−32T2+p2T4)2 |
| 31 | C22×C22 | (1−12T+72T2−12pT3+p2T4)(1+12T+72T2+12pT3+p2T4) |
| 37 | C23 | 1+983T4+p4T8 |
| 41 | C22 | (1−12T+72T2−12pT3+p2T4)2 |
| 43 | C22 | (1−85T2+p2T4)2 |
| 47 | C23 | 1+2143T4+p4T8 |
| 53 | C22 | (1−80T2+p2T4)2 |
| 59 | C22 | (1+16T+128T2+16pT3+p2T4)2 |
| 61 | C2 | (1−pT2)4 |
| 67 | C22 | (1+6T+18T2+6pT3+p2T4)2 |
| 71 | C23 | 1−9457T4+p4T8 |
| 73 | C22 | (1+12T+72T2+12pT3+p2T4)2 |
| 79 | C22 | (1−132T2+p2T4)2 |
| 83 | C22 | (1+10T+50T2+10pT3+p2T4)2 |
| 89 | C22 | (1+4T+8T2+4pT3+p2T4)2 |
| 97 | C22 | (1+14T+98T2+14pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.183503863471162482817469421664, −7.949970144349250383813649320626, −7.71442207920456603963892291435, −7.60721889227404273118802203977, −7.37186392693435805117818798283, −7.14328859976291820371974682354, −6.53306096055565267878808075195, −6.29858617194998800922041737282, −5.98747868371912356386435455814, −5.81671496112109025206349593107, −5.68900522642042334314257742942, −5.56051991924676673029888604411, −4.99132920166081112136667617576, −4.44603574149262605827057381643, −4.44283662951956588683922956516, −4.21350629763050392852135877784, −3.57496313961042972605135272492, −3.48804977272946765309609836342, −2.93739711415506004510821247999, −2.67146770059946876187202292332, −2.65575089887556229422964292453, −2.63960168777552721901613107640, −1.83594166905495058642333256099, −1.64159201182266667141281234590, −0.19767752283746219961372471541,
0.19767752283746219961372471541, 1.64159201182266667141281234590, 1.83594166905495058642333256099, 2.63960168777552721901613107640, 2.65575089887556229422964292453, 2.67146770059946876187202292332, 2.93739711415506004510821247999, 3.48804977272946765309609836342, 3.57496313961042972605135272492, 4.21350629763050392852135877784, 4.44283662951956588683922956516, 4.44603574149262605827057381643, 4.99132920166081112136667617576, 5.56051991924676673029888604411, 5.68900522642042334314257742942, 5.81671496112109025206349593107, 5.98747868371912356386435455814, 6.29858617194998800922041737282, 6.53306096055565267878808075195, 7.14328859976291820371974682354, 7.37186392693435805117818798283, 7.60721889227404273118802203977, 7.71442207920456603963892291435, 7.949970144349250383813649320626, 8.183503863471162482817469421664