Properties

Label 8-40e8-1.1-c1e4-0-13
Degree $8$
Conductor $6.554\times 10^{12}$
Sign $1$
Analytic cond. $26643.3$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·7-s + 4·9-s − 12·23-s − 24·31-s + 24·41-s + 12·47-s + 68·49-s − 48·63-s + 24·71-s + 16·73-s − 48·79-s + 6·81-s − 24·89-s − 16·97-s − 12·103-s + 24·113-s + 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 144·161-s + 163-s + 167-s + ⋯
L(s)  = 1  − 4.53·7-s + 4/3·9-s − 2.50·23-s − 4.31·31-s + 3.74·41-s + 1.75·47-s + 68/7·49-s − 6.04·63-s + 2.84·71-s + 1.87·73-s − 5.40·79-s + 2/3·81-s − 2.54·89-s − 1.62·97-s − 1.18·103-s + 2.25·113-s + 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 11.3·161-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(26643.3\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7372505403\)
\(L(\frac12)\) \(\approx\) \(0.7372505403\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$D_4\times C_2$ \( 1 - 4 T^{2} + 10 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
7$D_{4}$ \( ( 1 + 6 T + 20 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 22 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
23$D_{4}$ \( ( 1 + 6 T + 28 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - p T^{2} )^{4} \)
31$D_{4}$ \( ( 1 + 12 T + 86 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 38 T^{2} + p^{2} T^{4} )^{2} \)
41$D_{4}$ \( ( 1 - 12 T + 106 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 68 T^{2} + 2154 T^{4} - 68 p^{2} T^{6} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 - 6 T + 76 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 76 T^{2} + 1974 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 164 T^{2} + 13002 T^{4} - 164 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 - 12 T + 70 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_{4}$ \( ( 1 - 8 T + 54 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 12 T + p T^{2} )^{4} \)
83$D_4\times C_2$ \( 1 - 308 T^{2} + 37386 T^{4} - 308 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 + 12 T + 166 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 + 8 T + 102 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.71232668698640180797667246562, −6.54982041597820559567011241123, −6.42063915075709875881832336038, −5.89347622653997201109091335189, −5.74594863772436518834234912207, −5.73933794685541887185471948824, −5.72495468034720360008856466359, −5.49531226044552528410680903260, −5.05734636538964618529694229974, −4.36156406636242263863830466630, −4.36142487485072428769078152476, −4.07990890101526082200394947437, −3.99733779439817723181855403385, −3.95983321760789105428529623148, −3.38813411889109783797131683705, −3.32242106923152186483872695255, −3.13632651833736111570493731919, −2.92334236876681849653032330549, −2.36071409947482893284312822335, −2.30860160139900247381029996398, −2.01353434820075179885798404821, −1.60447023758483719775756512531, −1.08704178345478849237219758118, −0.41373076572827071569836634462, −0.34267446449125540644934033319, 0.34267446449125540644934033319, 0.41373076572827071569836634462, 1.08704178345478849237219758118, 1.60447023758483719775756512531, 2.01353434820075179885798404821, 2.30860160139900247381029996398, 2.36071409947482893284312822335, 2.92334236876681849653032330549, 3.13632651833736111570493731919, 3.32242106923152186483872695255, 3.38813411889109783797131683705, 3.95983321760789105428529623148, 3.99733779439817723181855403385, 4.07990890101526082200394947437, 4.36142487485072428769078152476, 4.36156406636242263863830466630, 5.05734636538964618529694229974, 5.49531226044552528410680903260, 5.72495468034720360008856466359, 5.73933794685541887185471948824, 5.74594863772436518834234912207, 5.89347622653997201109091335189, 6.42063915075709875881832336038, 6.54982041597820559567011241123, 6.71232668698640180797667246562

Graph of the $Z$-function along the critical line