Properties

Label 8-4032e4-1.1-c1e4-0-5
Degree $8$
Conductor $26429082.934\times 10^{7}$
Sign $1$
Analytic cond. $1.07446\times 10^{6}$
Root an. cond. $5.67412$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 4·25-s + 32·37-s + 8·43-s − 2·49-s − 32·67-s − 16·79-s − 16·109-s + 8·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4·169-s + 173-s − 16·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  − 1.51·7-s + 4/5·25-s + 5.26·37-s + 1.21·43-s − 2/7·49-s − 3.90·67-s − 1.80·79-s − 1.53·109-s + 8/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4/13·169-s + 0.0760·173-s − 1.20·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(1.07446\times 10^{6}\)
Root analytic conductor: \(5.67412\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.8180684839\)
\(L(\frac12)\) \(\approx\) \(0.8180684839\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \) 4.5.a_ae_a_cc
11$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \) 4.11.a_ai_a_jy
13$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \) 4.13.a_ae_a_ne
17$C_2^2$ \( ( 1 + 22 T^{2} + p^{2} T^{4} )^{2} \) 4.17.a_bs_a_bow
19$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \) 4.19.a_abc_a_bji
23$C_2^2$ \( ( 1 - 28 T^{2} + p^{2} T^{4} )^{2} \) 4.23.a_ace_a_csw
29$C_2^2$ \( ( 1 - 40 T^{2} + p^{2} T^{4} )^{2} \) 4.29.a_adc_a_ewg
31$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.31.a_aeu_a_inu
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \) 4.37.abg_um_aihk_cigk
41$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \) 4.41.a_fk_a_mfu
43$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \) 4.43.ai_ho_aboy_tms
47$C_2^2$ \( ( 1 + 46 T^{2} + p^{2} T^{4} )^{2} \) 4.47.a_do_a_jri
53$C_2^2$ \( ( 1 + 56 T^{2} + p^{2} T^{4} )^{2} \) 4.53.a_ei_a_mys
59$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \) 4.59.a_afs_a_skk
61$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \) 4.61.a_aca_a_mag
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \) 4.67.bg_zc_moe_esao
71$C_2^2$ \( ( 1 - 124 T^{2} + p^{2} T^{4} )^{2} \) 4.71.a_ajo_a_blre
73$C_2^2$ \( ( 1 - 122 T^{2} + p^{2} T^{4} )^{2} \) 4.73.a_ajk_a_bluk
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \) 4.79.q_pw_fzs_dafm
83$C_2^2$ \( ( 1 + 118 T^{2} + p^{2} T^{4} )^{2} \) 4.83.a_jc_a_bozm
89$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \) 4.89.a_fk_a_beru
97$C_2^2$ \( ( 1 - 170 T^{2} + p^{2} T^{4} )^{2} \) 4.97.a_anc_a_cspi
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.96540234377211939937171421846, −5.73780135450459054595467913766, −5.72697217453439037680699605603, −5.65707659306126034958585900375, −5.16347309132208418476105271848, −4.77299667757332560752612857223, −4.74753056007180436897972517996, −4.54207409742788470871929897061, −4.35813734184810242931397487068, −4.17876653985352456096687513964, −4.13612180376950093685972136455, −3.55293469435628186039436806496, −3.45106563058061676827104829594, −3.42996128020740950563017540543, −2.86970297117786531951481282595, −2.75331133160320226861115906339, −2.69692223347604779980805550460, −2.68001446861296984545536250745, −2.06633295405376184393002007633, −2.00318285639502746307916065769, −1.37088800537173436441269826180, −1.26073082200919827032678816460, −0.996914947118759936075404499524, −0.63082445344950819065764724194, −0.14913286812657322377418442719, 0.14913286812657322377418442719, 0.63082445344950819065764724194, 0.996914947118759936075404499524, 1.26073082200919827032678816460, 1.37088800537173436441269826180, 2.00318285639502746307916065769, 2.06633295405376184393002007633, 2.68001446861296984545536250745, 2.69692223347604779980805550460, 2.75331133160320226861115906339, 2.86970297117786531951481282595, 3.42996128020740950563017540543, 3.45106563058061676827104829594, 3.55293469435628186039436806496, 4.13612180376950093685972136455, 4.17876653985352456096687513964, 4.35813734184810242931397487068, 4.54207409742788470871929897061, 4.74753056007180436897972517996, 4.77299667757332560752612857223, 5.16347309132208418476105271848, 5.65707659306126034958585900375, 5.72697217453439037680699605603, 5.73780135450459054595467913766, 5.96540234377211939937171421846

Graph of the $Z$-function along the critical line