Properties

Label 8-39e8-1.1-c3e4-0-5
Degree $8$
Conductor $5.352\times 10^{12}$
Sign $1$
Analytic cond. $6.48606\times 10^{7}$
Root an. cond. $9.47322$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 115·16-s − 1.80e3·43-s − 1.37e3·49-s − 3.39e3·103-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯
L(s)  = 1  − 1.79·16-s − 6.41·43-s − 4·49-s − 3.24·103-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + 0.000300·223-s + 0.000292·227-s + 0.000288·229-s + 0.000281·233-s + 0.000270·239-s + 0.000267·241-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(6.48606\times 10^{7}\)
Root analytic conductor: \(9.47322\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 3^{8} \cdot 13^{8} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
13 \( 1 \)
good2$D_4\times C_2$ \( 1 + 115 T^{4} + p^{12} T^{8} \)
5$D_4\times C_2$ \( 1 + 3742 T^{4} + p^{12} T^{8} \)
7$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
11$D_4\times C_2$ \( 1 - 1486370 T^{4} + p^{12} T^{8} \)
17$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
19$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
23$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
29$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
31$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
37$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
41$D_4\times C_2$ \( 1 - 315317810 T^{4} + p^{12} T^{8} \)
43$C_2$ \( ( 1 + 452 T + p^{3} T^{2} )^{4} \)
47$D_4\times C_2$ \( 1 - 19480835090 T^{4} + p^{12} T^{8} \)
53$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
59$D_4\times C_2$ \( 1 + 78746477470 T^{4} + p^{12} T^{8} \)
61$C_2^2$ \( ( 1 - 438410 T^{2} + p^{6} T^{4} )^{2} \)
67$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
71$D_4\times C_2$ \( 1 - 234490873970 T^{4} + p^{12} T^{8} \)
73$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 811150 T^{2} + p^{6} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 633473875010 T^{4} + p^{12} T^{8} \)
89$D_4\times C_2$ \( 1 - 926581329650 T^{4} + p^{12} T^{8} \)
97$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.71455830302494320646054356260, −6.68613027365212190681432055115, −6.39890592584817335997313572899, −6.37291978815668365772005135821, −6.06178690426260958289221079158, −5.59841777465940521575435540804, −5.40733163364397188505797768215, −5.27584693661184407968128493907, −4.97316708748453382701676845352, −4.82528943994074521641636881511, −4.66267163451729961046086568386, −4.41636826877582856312733702961, −4.34302551539624240450587668861, −3.59149591061077614802528530241, −3.57470470352467855535306473403, −3.56493847822622501583319031591, −3.24681318391671947977094535206, −2.81889130521058540160829223361, −2.73129345536957542935029507039, −2.21194569838360631144232425907, −2.13409999330796236444640788122, −1.71403526455697741416538416985, −1.53515660561355164867993949043, −1.27193287679133555141862337288, −1.00429582563569572043564346386, 0, 0, 0, 0, 1.00429582563569572043564346386, 1.27193287679133555141862337288, 1.53515660561355164867993949043, 1.71403526455697741416538416985, 2.13409999330796236444640788122, 2.21194569838360631144232425907, 2.73129345536957542935029507039, 2.81889130521058540160829223361, 3.24681318391671947977094535206, 3.56493847822622501583319031591, 3.57470470352467855535306473403, 3.59149591061077614802528530241, 4.34302551539624240450587668861, 4.41636826877582856312733702961, 4.66267163451729961046086568386, 4.82528943994074521641636881511, 4.97316708748453382701676845352, 5.27584693661184407968128493907, 5.40733163364397188505797768215, 5.59841777465940521575435540804, 6.06178690426260958289221079158, 6.37291978815668365772005135821, 6.39890592584817335997313572899, 6.68613027365212190681432055115, 6.71455830302494320646054356260

Graph of the $Z$-function along the critical line