Properties

Label 8-3871e4-1.1-c0e4-0-4
Degree $8$
Conductor $2.245\times 10^{14}$
Sign $1$
Analytic cond. $13.9290$
Root an. cond. $1.38992$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s − 2·9-s + 10-s + 11-s − 2·13-s − 2·18-s + 19-s + 20-s + 22-s + 23-s + 25-s − 2·26-s + 31-s − 32-s − 2·36-s + 38-s + 44-s − 2·45-s + 46-s + 50-s − 2·52-s + 55-s + 62-s − 64-s − 2·65-s + ⋯
L(s)  = 1  + 2-s + 4-s + 5-s − 2·9-s + 10-s + 11-s − 2·13-s − 2·18-s + 19-s + 20-s + 22-s + 23-s + 25-s − 2·26-s + 31-s − 32-s − 2·36-s + 38-s + 44-s − 2·45-s + 46-s + 50-s − 2·52-s + 55-s + 62-s − 64-s − 2·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{8} \cdot 79^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{8} \cdot 79^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(7^{8} \cdot 79^{4}\)
Sign: $1$
Analytic conductor: \(13.9290\)
Root analytic conductor: \(1.38992\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 7^{8} \cdot 79^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(3.597427643\)
\(L(\frac12)\) \(\approx\) \(3.597427643\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7 \( 1 \)
79$C_2$ \( ( 1 + T + T^{2} )^{2} \)
good2$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
3$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
5$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
11$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
13$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
19$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
23$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
31$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
37$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
47$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
53$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
67$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
83$C_1$ \( ( 1 - T )^{8} \)
89$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
97$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.31073830660997941292833676860, −5.90171824620450564999641349229, −5.84942517394790515761329877924, −5.56644277039579083052077003886, −5.23377728037433428123523856073, −5.18541923637781256193198440152, −5.07501538190120198681140174816, −4.94998973327039984275824247256, −4.84491414526951794160399749363, −4.35563152644912492675661090504, −4.23456501180263449862779518819, −3.93870697455737173873386735713, −3.59274002488400520036042299138, −3.46423104129680499569693548471, −3.23856142694820928575502665512, −3.07515285098843577488421230566, −2.94681527158056944418307728554, −2.59515710960398674045930546840, −2.30479749010096875475985333883, −2.27543089016608553645157594398, −2.15581877413023965865285525504, −1.62386949582503797664970533366, −1.35545480193398473659176646527, −0.851464515418252297395622892466, −0.62531970869581775371546194955, 0.62531970869581775371546194955, 0.851464515418252297395622892466, 1.35545480193398473659176646527, 1.62386949582503797664970533366, 2.15581877413023965865285525504, 2.27543089016608553645157594398, 2.30479749010096875475985333883, 2.59515710960398674045930546840, 2.94681527158056944418307728554, 3.07515285098843577488421230566, 3.23856142694820928575502665512, 3.46423104129680499569693548471, 3.59274002488400520036042299138, 3.93870697455737173873386735713, 4.23456501180263449862779518819, 4.35563152644912492675661090504, 4.84491414526951794160399749363, 4.94998973327039984275824247256, 5.07501538190120198681140174816, 5.18541923637781256193198440152, 5.23377728037433428123523856073, 5.56644277039579083052077003886, 5.84942517394790515761329877924, 5.90171824620450564999641349229, 6.31073830660997941292833676860

Graph of the $Z$-function along the critical line