L(s) = 1 | + 4-s − 2·17-s + 2·29-s + 6·41-s + 2·53-s − 4·61-s − 64-s − 2·68-s + 4·73-s + 81-s − 2·89-s + 2·109-s + 4·113-s + 2·116-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 6·164-s + 167-s − 2·169-s + 173-s + ⋯ |
L(s) = 1 | + 4-s − 2·17-s + 2·29-s + 6·41-s + 2·53-s − 4·61-s − 64-s − 2·68-s + 4·73-s + 81-s − 2·89-s + 2·109-s + 4·113-s + 2·116-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 6·164-s + 167-s − 2·169-s + 173-s + ⋯ |
Λ(s)=(=((28⋅58⋅374)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((28⋅58⋅374)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
28⋅58⋅374
|
Sign: |
1
|
Analytic conductor: |
11.6261 |
Root analytic conductor: |
1.35887 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 28⋅58⋅374, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
2.483325229 |
L(21) |
≈ |
2.483325229 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C22 | 1−T2+T4 |
| 5 | | 1 |
| 37 | C22 | 1−T2+T4 |
good | 3 | C23 | 1−T4+T8 |
| 7 | C23 | 1−T4+T8 |
| 11 | C2 | (1+T2)4 |
| 13 | C2 | (1−T+T2)2(1+T+T2)2 |
| 17 | C1×C2 | (1+T)4(1−T+T2)2 |
| 19 | C23 | 1−T4+T8 |
| 23 | C2 | (1+T2)4 |
| 29 | C2×C22 | (1−T+T2)2(1−T2+T4) |
| 31 | C22 | (1+T4)2 |
| 41 | C1×C2 | (1−T)4(1−T+T2)2 |
| 43 | C2 | (1+T2)4 |
| 47 | C22 | (1+T4)2 |
| 53 | C2×C22 | (1−T+T2)2(1−T2+T4) |
| 59 | C23 | 1−T4+T8 |
| 61 | C1×C22 | (1+T)4(1−T2+T4) |
| 67 | C23 | 1−T4+T8 |
| 71 | C2 | (1−T+T2)2(1+T+T2)2 |
| 73 | C1×C2 | (1−T)4(1+T2)2 |
| 79 | C23 | 1−T4+T8 |
| 83 | C23 | 1−T4+T8 |
| 89 | C2×C2 | (1+T2)2(1+T+T2)2 |
| 97 | C22 | (1−T2+T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.16630630524096794131161258355, −6.14471679369044540232954315180, −5.88631361975778330899983581780, −5.85914437662118805665244560444, −5.42308971380183987536545571423, −5.14000427105691417025556327076, −5.11308147018239799802673424525, −4.63403413753255771279975077233, −4.54423795827166947729060764740, −4.51213308020335398300577713798, −4.28419056230916022995080388534, −3.97613326194533055134601868448, −3.76578334414380738175481936607, −3.73479125326380864409426117049, −3.04665899878209660345667356242, −3.04606007709590653142412796751, −2.81413482607366074624121339362, −2.58480761748897134067001321638, −2.38937685184932740618524699464, −2.12913942530925576557983242255, −2.03084534267029494748203269663, −1.71114282316159398577028843638, −1.06564558925585274278139865091, −1.01569777304532563367244706446, −0.63715488049539210376889932840,
0.63715488049539210376889932840, 1.01569777304532563367244706446, 1.06564558925585274278139865091, 1.71114282316159398577028843638, 2.03084534267029494748203269663, 2.12913942530925576557983242255, 2.38937685184932740618524699464, 2.58480761748897134067001321638, 2.81413482607366074624121339362, 3.04606007709590653142412796751, 3.04665899878209660345667356242, 3.73479125326380864409426117049, 3.76578334414380738175481936607, 3.97613326194533055134601868448, 4.28419056230916022995080388534, 4.51213308020335398300577713798, 4.54423795827166947729060764740, 4.63403413753255771279975077233, 5.11308147018239799802673424525, 5.14000427105691417025556327076, 5.42308971380183987536545571423, 5.85914437662118805665244560444, 5.88631361975778330899983581780, 6.14471679369044540232954315180, 6.16630630524096794131161258355