Properties

Label 8-3700e4-1.1-c0e4-0-3
Degree $8$
Conductor $1.874\times 10^{14}$
Sign $1$
Analytic cond. $11.6261$
Root an. cond. $1.35887$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 2·17-s + 2·29-s + 6·41-s + 2·53-s − 4·61-s − 64-s − 2·68-s + 4·73-s + 81-s − 2·89-s + 2·109-s + 4·113-s + 2·116-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 6·164-s + 167-s − 2·169-s + 173-s + ⋯
L(s)  = 1  + 4-s − 2·17-s + 2·29-s + 6·41-s + 2·53-s − 4·61-s − 64-s − 2·68-s + 4·73-s + 81-s − 2·89-s + 2·109-s + 4·113-s + 2·116-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 6·164-s + 167-s − 2·169-s + 173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{8} \cdot 37^{4}\)
Sign: $1$
Analytic conductor: \(11.6261\)
Root analytic conductor: \(1.35887\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{8} \cdot 37^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.483325229\)
\(L(\frac12)\) \(\approx\) \(2.483325229\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - T^{2} + T^{4} \)
5 \( 1 \)
37$C_2^2$ \( 1 - T^{2} + T^{4} \)
good3$C_2^3$ \( 1 - T^{4} + T^{8} \)
7$C_2^3$ \( 1 - T^{4} + T^{8} \)
11$C_2$ \( ( 1 + T^{2} )^{4} \)
13$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
17$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
19$C_2^3$ \( 1 - T^{4} + T^{8} \)
23$C_2$ \( ( 1 + T^{2} )^{4} \)
29$C_2$$\times$$C_2^2$ \( ( 1 - T + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
31$C_2^2$ \( ( 1 + T^{4} )^{2} \)
41$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 - T + T^{2} )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + T^{4} )^{2} \)
53$C_2$$\times$$C_2^2$ \( ( 1 - T + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
59$C_2^3$ \( 1 - T^{4} + T^{8} \)
61$C_1$$\times$$C_2^2$ \( ( 1 + T )^{4}( 1 - T^{2} + T^{4} ) \)
67$C_2^3$ \( 1 - T^{4} + T^{8} \)
71$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
73$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T^{2} )^{2} \)
79$C_2^3$ \( 1 - T^{4} + T^{8} \)
83$C_2^3$ \( 1 - T^{4} + T^{8} \)
89$C_2$$\times$$C_2$ \( ( 1 + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
97$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.16630630524096794131161258355, −6.14471679369044540232954315180, −5.88631361975778330899983581780, −5.85914437662118805665244560444, −5.42308971380183987536545571423, −5.14000427105691417025556327076, −5.11308147018239799802673424525, −4.63403413753255771279975077233, −4.54423795827166947729060764740, −4.51213308020335398300577713798, −4.28419056230916022995080388534, −3.97613326194533055134601868448, −3.76578334414380738175481936607, −3.73479125326380864409426117049, −3.04665899878209660345667356242, −3.04606007709590653142412796751, −2.81413482607366074624121339362, −2.58480761748897134067001321638, −2.38937685184932740618524699464, −2.12913942530925576557983242255, −2.03084534267029494748203269663, −1.71114282316159398577028843638, −1.06564558925585274278139865091, −1.01569777304532563367244706446, −0.63715488049539210376889932840, 0.63715488049539210376889932840, 1.01569777304532563367244706446, 1.06564558925585274278139865091, 1.71114282316159398577028843638, 2.03084534267029494748203269663, 2.12913942530925576557983242255, 2.38937685184932740618524699464, 2.58480761748897134067001321638, 2.81413482607366074624121339362, 3.04606007709590653142412796751, 3.04665899878209660345667356242, 3.73479125326380864409426117049, 3.76578334414380738175481936607, 3.97613326194533055134601868448, 4.28419056230916022995080388534, 4.51213308020335398300577713798, 4.54423795827166947729060764740, 4.63403413753255771279975077233, 5.11308147018239799802673424525, 5.14000427105691417025556327076, 5.42308971380183987536545571423, 5.85914437662118805665244560444, 5.88631361975778330899983581780, 6.14471679369044540232954315180, 6.16630630524096794131161258355

Graph of the $Z$-function along the critical line