Properties

Label 8-3675e4-1.1-c0e4-0-6
Degree $8$
Conductor $1.824\times 10^{14}$
Sign $1$
Analytic cond. $11.3150$
Root an. cond. $1.35427$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 6·4-s − 15·16-s + 4·23-s − 24·32-s + 16·46-s − 6·64-s + 4·79-s − 81-s + 24·92-s + 4·109-s + 4·113-s + 2·121-s + 127-s + 36·128-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 16·158-s − 4·162-s + 163-s + 167-s + 173-s + 179-s + ⋯
L(s)  = 1  + 4·2-s + 6·4-s − 15·16-s + 4·23-s − 24·32-s + 16·46-s − 6·64-s + 4·79-s − 81-s + 24·92-s + 4·109-s + 4·113-s + 2·121-s + 127-s + 36·128-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 16·158-s − 4·162-s + 163-s + 167-s + 173-s + 179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(11.3150\)
Root analytic conductor: \(1.35427\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{8} \cdot 7^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(7.683224502\)
\(L(\frac12)\) \(\approx\) \(7.683224502\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2^2$ \( 1 + T^{4} \)
5 \( 1 \)
7 \( 1 \)
good2$C_2$ \( ( 1 - T + T^{2} )^{4} \)
11$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + T^{4} )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{4} \)
23$C_2$ \( ( 1 - T + T^{2} )^{4} \)
29$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
47$C_2$ \( ( 1 + T^{2} )^{4} \)
53$C_2$ \( ( 1 + T^{2} )^{4} \)
59$C_2^2$ \( ( 1 + T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
79$C_2$ \( ( 1 - T + T^{2} )^{4} \)
83$C_2$ \( ( 1 + T^{2} )^{4} \)
89$C_2^2$ \( ( 1 + T^{4} )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.05231875024656235219199305472, −5.82262556916373051868667095923, −5.70673311388995692299048142228, −5.43514013282420255398045784370, −5.41198716296725144750068194413, −5.05873013656178212325718798600, −4.84252052523841631714782420990, −4.76403826014019186605322703975, −4.73028675993986301333392718250, −4.56521418001281531156325148642, −4.36904262518443610069134769195, −4.04688947483348047150666125227, −3.83109395389377647197545016913, −3.54241573000367919136930449852, −3.40610627030842974818616456330, −3.19629348921094898149483370976, −3.13394024423283417938821040712, −3.12091039565285188317356420289, −2.67745929481078779548918971847, −2.28833442704790488035368851254, −2.18097009831759381127793093580, −2.03289039338714900240062601783, −1.20948653885162321301380129031, −0.74430272196132175298441590229, −0.73306197383431559847209943120, 0.73306197383431559847209943120, 0.74430272196132175298441590229, 1.20948653885162321301380129031, 2.03289039338714900240062601783, 2.18097009831759381127793093580, 2.28833442704790488035368851254, 2.67745929481078779548918971847, 3.12091039565285188317356420289, 3.13394024423283417938821040712, 3.19629348921094898149483370976, 3.40610627030842974818616456330, 3.54241573000367919136930449852, 3.83109395389377647197545016913, 4.04688947483348047150666125227, 4.36904262518443610069134769195, 4.56521418001281531156325148642, 4.73028675993986301333392718250, 4.76403826014019186605322703975, 4.84252052523841631714782420990, 5.05873013656178212325718798600, 5.41198716296725144750068194413, 5.43514013282420255398045784370, 5.70673311388995692299048142228, 5.82262556916373051868667095923, 6.05231875024656235219199305472

Graph of the $Z$-function along the critical line