Properties

Label 8-3640e4-1.1-c0e4-0-23
Degree $8$
Conductor $1.756\times 10^{14}$
Sign $1$
Analytic cond. $10.8901$
Root an. cond. $1.34781$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·3-s + 4-s − 8·6-s + 2·8-s + 11·9-s + 4·12-s + 2·13-s − 4·16-s − 22·18-s − 2·19-s + 2·23-s + 8·24-s + 25-s − 4·26-s + 24·27-s + 2·32-s + 11·36-s + 4·38-s + 8·39-s − 4·46-s − 16·48-s + 49-s − 2·50-s + 2·52-s − 48·54-s − 8·57-s + ⋯
L(s)  = 1  − 2·2-s + 4·3-s + 4-s − 8·6-s + 2·8-s + 11·9-s + 4·12-s + 2·13-s − 4·16-s − 22·18-s − 2·19-s + 2·23-s + 8·24-s + 25-s − 4·26-s + 24·27-s + 2·32-s + 11·36-s + 4·38-s + 8·39-s − 4·46-s − 16·48-s + 49-s − 2·50-s + 2·52-s − 48·54-s − 8·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 5^{4} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(10.8901\)
Root analytic conductor: \(1.34781\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 5^{4} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(4.668149327\)
\(L(\frac12)\) \(\approx\) \(4.668149327\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T + T^{2} )^{2} \)
5$C_2^2$ \( 1 - T^{2} + T^{4} \)
7$C_2^2$ \( 1 - T^{2} + T^{4} \)
13$C_2$ \( ( 1 - T + T^{2} )^{2} \)
good3$C_1$$\times$$C_2^2$ \( ( 1 - T )^{4}( 1 - T^{2} + T^{4} ) \)
11$C_2^3$ \( 1 - T^{4} + T^{8} \)
17$C_2^3$ \( 1 - T^{4} + T^{8} \)
19$C_2$$\times$$C_2^2$ \( ( 1 + T + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T^{2} )^{2} \)
29$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
41$C_2^3$ \( 1 - T^{4} + T^{8} \)
43$C_2^3$ \( 1 - T^{4} + T^{8} \)
47$C_2$ \( ( 1 + T^{2} )^{4} \)
53$C_2^2$ \( ( 1 + T^{4} )^{2} \)
59$C_1$$\times$$C_2^2$ \( ( 1 + T )^{4}( 1 - T^{2} + T^{4} ) \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
67$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
71$C_1$$\times$$C_2^2$ \( ( 1 - T )^{4}( 1 - T^{2} + T^{4} ) \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
79$C_2$ \( ( 1 + T^{2} )^{4} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
89$C_2^3$ \( 1 - T^{4} + T^{8} \)
97$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.47289244742668784895682168104, −6.27844209041723390085835423740, −6.06424074198102654227604949706, −5.74062107753476290098831993642, −5.14355284223899592945952557514, −5.09122903636230900385853673630, −4.73953138531396002368187577376, −4.61799984097759015021380845569, −4.58021026108894911067600820193, −4.33765515982474652542828318622, −4.09698832231528588949574882102, −3.96797122715333334081241053111, −3.52572359031910856935543398102, −3.50217306691681596862853724067, −3.41940773689770390549422800124, −3.00763446681404356506278082068, −2.95474803807198056688122884722, −2.35930788952853218228438763049, −2.24357303334499414675160963586, −2.12583250879005686762817406575, −1.93976320731464094318938099064, −1.33164799524263214984465501393, −1.31654905967129161154352117563, −1.11325645100132809737785826950, −1.04954425928130118980189683439, 1.04954425928130118980189683439, 1.11325645100132809737785826950, 1.31654905967129161154352117563, 1.33164799524263214984465501393, 1.93976320731464094318938099064, 2.12583250879005686762817406575, 2.24357303334499414675160963586, 2.35930788952853218228438763049, 2.95474803807198056688122884722, 3.00763446681404356506278082068, 3.41940773689770390549422800124, 3.50217306691681596862853724067, 3.52572359031910856935543398102, 3.96797122715333334081241053111, 4.09698832231528588949574882102, 4.33765515982474652542828318622, 4.58021026108894911067600820193, 4.61799984097759015021380845569, 4.73953138531396002368187577376, 5.09122903636230900385853673630, 5.14355284223899592945952557514, 5.74062107753476290098831993642, 6.06424074198102654227604949706, 6.27844209041723390085835423740, 6.47289244742668784895682168104

Graph of the $Z$-function along the critical line