Properties

Label 8-360e4-1.1-c1e4-0-7
Degree 88
Conductor 1679616000016796160000
Sign 11
Analytic cond. 68.283968.2839
Root an. cond. 1.695461.69546
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·5-s − 2·7-s + 3·9-s + 4·15-s − 8·17-s − 8·19-s − 4·21-s + 10·23-s + 25-s + 10·27-s − 6·29-s − 12·31-s − 4·35-s − 24·37-s + 10·41-s − 4·43-s + 6·45-s + 14·47-s + 9·49-s − 16·51-s − 8·53-s − 16·57-s + 12·59-s + 6·61-s − 6·63-s + 2·67-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.894·5-s − 0.755·7-s + 9-s + 1.03·15-s − 1.94·17-s − 1.83·19-s − 0.872·21-s + 2.08·23-s + 1/5·25-s + 1.92·27-s − 1.11·29-s − 2.15·31-s − 0.676·35-s − 3.94·37-s + 1.56·41-s − 0.609·43-s + 0.894·45-s + 2.04·47-s + 9/7·49-s − 2.24·51-s − 1.09·53-s − 2.11·57-s + 1.56·59-s + 0.768·61-s − 0.755·63-s + 0.244·67-s + ⋯

Functional equation

Λ(s)=((2123854)s/2ΓC(s)4L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{8} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((2123854)s/2ΓC(s+1/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{8} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 21238542^{12} \cdot 3^{8} \cdot 5^{4}
Sign: 11
Analytic conductor: 68.283968.2839
Root analytic conductor: 1.695461.69546
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 2123854, ( :1/2,1/2,1/2,1/2), 1)(8,\ 2^{12} \cdot 3^{8} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )

Particular Values

L(1)L(1) \approx 2.4838366932.483836693
L(12)L(\frac12) \approx 2.4838366932.483836693
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
3C22C_2^2 12T+T22pT3+p2T4 1 - 2 T + T^{2} - 2 p T^{3} + p^{2} T^{4}
5C2C_2 (1T+T2)2 ( 1 - T + T^{2} )^{2}
good7D4×C2D_4\times C_2 1+2T5T210T3+4T410pT55p2T6+2p3T7+p4T8 1 + 2 T - 5 T^{2} - 10 T^{3} + 4 T^{4} - 10 p T^{5} - 5 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8}
11C22C_2^2 (1pT2+p2T4)2 ( 1 - p T^{2} + p^{2} T^{4} )^{2}
13C22C_2^2 (1pT2+p2T4)2 ( 1 - p T^{2} + p^{2} T^{4} )^{2}
17C2C_2 (1+2T+pT2)4 ( 1 + 2 T + p T^{2} )^{4}
19D4D_{4} (1+4T+18T2+4pT3+p2T4)2 ( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2}
23D4×C2D_4\times C_2 110T+35T2190T3+1396T4190pT5+35p2T610p3T7+p4T8 1 - 10 T + 35 T^{2} - 190 T^{3} + 1396 T^{4} - 190 p T^{5} + 35 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8}
29D4×C2D_4\times C_2 1+6T7T290T336T490pT57p2T6+6p3T7+p4T8 1 + 6 T - 7 T^{2} - 90 T^{3} - 36 T^{4} - 90 p T^{5} - 7 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8}
31D4×C2D_4\times C_2 1+12T+70T2+144T3+51T4+144pT5+70p2T6+12p3T7+p4T8 1 + 12 T + 70 T^{2} + 144 T^{3} + 51 T^{4} + 144 p T^{5} + 70 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8}
37C2C_2 (1+6T+pT2)4 ( 1 + 6 T + p T^{2} )^{4}
41D4×C2D_4\times C_2 110T+17T210T3+1108T410pT5+17p2T610p3T7+p4T8 1 - 10 T + 17 T^{2} - 10 T^{3} + 1108 T^{4} - 10 p T^{5} + 17 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8}
43D4×C2D_4\times C_2 1+4T+22T2368T32501T4368pT5+22p2T6+4p3T7+p4T8 1 + 4 T + 22 T^{2} - 368 T^{3} - 2501 T^{4} - 368 p T^{5} + 22 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8}
47D4×C2D_4\times C_2 114T+59T2602T3+7348T4602pT5+59p2T614p3T7+p4T8 1 - 14 T + 59 T^{2} - 602 T^{3} + 7348 T^{4} - 602 p T^{5} + 59 p^{2} T^{6} - 14 p^{3} T^{7} + p^{4} T^{8}
53D4D_{4} (1+4T+14T2+4pT3+p2T4)2 ( 1 + 4 T + 14 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2}
59D4×C2D_4\times C_2 112T+14T2144T3+4923T4144pT5+14p2T612p3T7+p4T8 1 - 12 T + 14 T^{2} - 144 T^{3} + 4923 T^{4} - 144 p T^{5} + 14 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8}
61C22C_2^2 (13T52T23pT3+p2T4)2 ( 1 - 3 T - 52 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2}
67D4×C2D_4\times C_2 12T+19T2+298T34532T4+298pT5+19p2T62p3T7+p4T8 1 - 2 T + 19 T^{2} + 298 T^{3} - 4532 T^{4} + 298 p T^{5} + 19 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8}
71C22C_2^2 (1+46T2+p2T4)2 ( 1 + 46 T^{2} + p^{2} T^{4} )^{2}
73D4D_{4} (18T+66T28pT3+p2T4)2 ( 1 - 8 T + 66 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2}
79D4×C2D_4\times C_2 14T122T2+80T3+11539T4+80pT5122p2T64p3T7+p4T8 1 - 4 T - 122 T^{2} + 80 T^{3} + 11539 T^{4} + 80 p T^{5} - 122 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8}
83D4×C2D_4\times C_2 16T133T218T3+18684T418pT5133p2T66p3T7+p4T8 1 - 6 T - 133 T^{2} - 18 T^{3} + 18684 T^{4} - 18 p T^{5} - 133 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8}
89D4D_{4} (1+14T+131T2+14pT3+p2T4)2 ( 1 + 14 T + 131 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2}
97C22C_2^2 (1+2T93T2+2pT3+p2T4)2 ( 1 + 2 T - 93 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.410216165895431156306392478615, −8.213947696406722007585818302209, −7.81992017963868845293862917471, −7.58033622860044370313005924892, −7.07107515254452554170514653658, −6.92719753273848474696197163068, −6.80474761404584793533608593350, −6.73509164905450659471738177886, −6.56996510580662521243563312487, −5.99258756844737649999135968223, −5.56119023600477559060575936366, −5.46436336555606318863860802678, −5.21943140144790973909746308195, −5.03210393698369414987593930865, −4.31804690430714939877816087568, −4.21677105280676442361984230932, −3.99071748656861140630327823532, −3.70179882711711695871574156615, −3.18251269739172063177625062524, −2.98189148802267898869008997397, −2.50688123047966187989500561819, −2.26102702955856286519722017493, −1.80144596751132884212957624817, −1.69963129427529424521091621478, −0.55773988127577540184293511907, 0.55773988127577540184293511907, 1.69963129427529424521091621478, 1.80144596751132884212957624817, 2.26102702955856286519722017493, 2.50688123047966187989500561819, 2.98189148802267898869008997397, 3.18251269739172063177625062524, 3.70179882711711695871574156615, 3.99071748656861140630327823532, 4.21677105280676442361984230932, 4.31804690430714939877816087568, 5.03210393698369414987593930865, 5.21943140144790973909746308195, 5.46436336555606318863860802678, 5.56119023600477559060575936366, 5.99258756844737649999135968223, 6.56996510580662521243563312487, 6.73509164905450659471738177886, 6.80474761404584793533608593350, 6.92719753273848474696197163068, 7.07107515254452554170514653658, 7.58033622860044370313005924892, 7.81992017963868845293862917471, 8.213947696406722007585818302209, 8.410216165895431156306392478615

Graph of the ZZ-function along the critical line