Properties

Label 8-3330e4-1.1-c1e4-0-4
Degree $8$
Conductor $1.230\times 10^{14}$
Sign $1$
Analytic cond. $499902.$
Root an. cond. $5.15656$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 4·5-s + 3·16-s + 8·20-s + 2·25-s + 12·29-s − 16·31-s + 16·41-s + 2·49-s + 24·59-s − 4·64-s − 24·71-s + 32·79-s − 12·80-s + 24·89-s − 4·100-s + 16·101-s − 16·109-s − 24·116-s − 38·121-s + 32·124-s + 28·125-s + 127-s + 131-s + 137-s + 139-s − 48·145-s + ⋯
L(s)  = 1  − 4-s − 1.78·5-s + 3/4·16-s + 1.78·20-s + 2/5·25-s + 2.22·29-s − 2.87·31-s + 2.49·41-s + 2/7·49-s + 3.12·59-s − 1/2·64-s − 2.84·71-s + 3.60·79-s − 1.34·80-s + 2.54·89-s − 2/5·100-s + 1.59·101-s − 1.53·109-s − 2.22·116-s − 3.45·121-s + 2.87·124-s + 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 3.98·145-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 37^{4}\)
Sign: $1$
Analytic conductor: \(499902.\)
Root analytic conductor: \(5.15656\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 37^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.9487608053\)
\(L(\frac12)\) \(\approx\) \(0.9487608053\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3 \( 1 \)
5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
good7$D_4\times C_2$ \( 1 - 2 T^{2} + 51 T^{4} - 2 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 + 19 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
17$D_4\times C_2$ \( 1 - 26 T^{2} + 315 T^{4} - 26 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 60 T^{2} + 1766 T^{4} - 60 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \)
31$D_{4}$ \( ( 1 + 8 T + 75 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_{4}$ \( ( 1 - 8 T + 71 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 110 T^{2} + 6291 T^{4} - 110 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 36 T^{2} + 1670 T^{4} - 36 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 198 T^{2} + 15371 T^{4} - 198 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 - 12 T + 142 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 95 T^{2} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 236 T^{2} + 22710 T^{4} - 236 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 + 12 T + 130 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 44 T^{2} + 4230 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 - 16 T + 210 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 236 T^{2} + 25974 T^{4} - 236 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 - 12 T + 202 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 + 106 T^{2} + 17739 T^{4} + 106 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.02573289138485796378101316006, −5.91079321144527856732438140446, −5.60528249995130852028694832740, −5.44010686247472509460860168513, −5.27900172217678510638033731009, −5.17188026032314241446046205277, −4.83855690282284585175866506531, −4.49518449103386073933436799969, −4.39716141530395578948205897324, −4.31986622155423237050830031500, −4.13695351712228260690119464596, −3.79173530499187407756904169797, −3.59668021517392531234737875803, −3.46859734787065875664228417706, −3.44665292731848628477045373684, −3.00489844789573925640939861636, −2.70331145930435616757934117590, −2.36413637532014137399237414288, −2.27186861230986432627170657236, −2.00082558545639453574563306795, −1.55433838949197417017136989419, −1.07907748249255115341260539784, −0.948968486030020431898171832621, −0.55125228426889112981815686767, −0.24055065793603950669518480481, 0.24055065793603950669518480481, 0.55125228426889112981815686767, 0.948968486030020431898171832621, 1.07907748249255115341260539784, 1.55433838949197417017136989419, 2.00082558545639453574563306795, 2.27186861230986432627170657236, 2.36413637532014137399237414288, 2.70331145930435616757934117590, 3.00489844789573925640939861636, 3.44665292731848628477045373684, 3.46859734787065875664228417706, 3.59668021517392531234737875803, 3.79173530499187407756904169797, 4.13695351712228260690119464596, 4.31986622155423237050830031500, 4.39716141530395578948205897324, 4.49518449103386073933436799969, 4.83855690282284585175866506531, 5.17188026032314241446046205277, 5.27900172217678510638033731009, 5.44010686247472509460860168513, 5.60528249995130852028694832740, 5.91079321144527856732438140446, 6.02573289138485796378101316006

Graph of the $Z$-function along the critical line