Properties

Label 8-3330e4-1.1-c1e4-0-1
Degree $8$
Conductor $1.230\times 10^{14}$
Sign $1$
Analytic cond. $499902.$
Root an. cond. $5.15656$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 4·7-s + 4·11-s + 3·16-s − 2·25-s + 8·28-s + 2·37-s − 14·41-s − 8·44-s − 18·49-s + 8·53-s − 4·64-s + 4·67-s + 24·71-s + 18·73-s − 16·77-s − 10·83-s + 4·100-s + 12·101-s + 14·107-s − 12·112-s − 34·121-s + 127-s + 131-s + 137-s + 139-s − 4·148-s + ⋯
L(s)  = 1  − 4-s − 1.51·7-s + 1.20·11-s + 3/4·16-s − 2/5·25-s + 1.51·28-s + 0.328·37-s − 2.18·41-s − 1.20·44-s − 2.57·49-s + 1.09·53-s − 1/2·64-s + 0.488·67-s + 2.84·71-s + 2.10·73-s − 1.82·77-s − 1.09·83-s + 2/5·100-s + 1.19·101-s + 1.35·107-s − 1.13·112-s − 3.09·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.328·148-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 37^{4}\)
Sign: $1$
Analytic conductor: \(499902.\)
Root analytic conductor: \(5.15656\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 37^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.4045446473\)
\(L(\frac12)\) \(\approx\) \(0.4045446473\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3 \( 1 \)
5$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
good7$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
11$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
13$D_4\times C_2$ \( 1 - 15 T^{2} + 376 T^{4} - 15 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 - 33 T^{2} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 15 T^{2} - 116 T^{4} - 15 p^{2} T^{6} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 31 T^{2} + 404 T^{4} - 31 p^{2} T^{6} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 55 T^{2} + 1544 T^{4} - 55 p^{2} T^{6} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 63 T^{2} + 2020 T^{4} - 63 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 + 7 T + 76 T^{2} + 7 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 75 T^{2} + 2896 T^{4} - 75 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$D_{4}$ \( ( 1 - 4 T + 37 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 88 T^{2} + 8606 T^{4} - 88 p^{2} T^{6} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 63 T^{2} + 3160 T^{4} - 63 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 - 2 T + 62 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
73$D_{4}$ \( ( 1 - 9 T + 148 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 - 152 T^{2} + 15630 T^{4} - 152 p^{2} T^{6} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 + 5 T + 154 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 + 13 T^{2} + 2580 T^{4} + 13 p^{2} T^{6} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 267 T^{2} + 33556 T^{4} - 267 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.18421010551790684908672606454, −5.88227541493848101245801609164, −5.70944635047447525128481600264, −5.58780656960811129490313654300, −5.27180845095302108205600725340, −4.94033382549607721366142257581, −4.93598913306011564123489085070, −4.78157744838321647734294124679, −4.47895403829506723129423182779, −4.23046028899371530564944203745, −4.00571812639642856180300766667, −3.68038106460513237966599122867, −3.66848253610843747969761339479, −3.41676633444817839873570090198, −3.32561831312769064256456780318, −2.96076826390801111928409686114, −2.90901306150779596697702020260, −2.34695967062498802606730096442, −2.07893625194029006023946481138, −2.03141151084177027312994500709, −1.50652441954701330223800895279, −1.39274435784194112051589470155, −0.75573437583752738728305891077, −0.73784531045714428407572648334, −0.12543464394368656207169685668, 0.12543464394368656207169685668, 0.73784531045714428407572648334, 0.75573437583752738728305891077, 1.39274435784194112051589470155, 1.50652441954701330223800895279, 2.03141151084177027312994500709, 2.07893625194029006023946481138, 2.34695967062498802606730096442, 2.90901306150779596697702020260, 2.96076826390801111928409686114, 3.32561831312769064256456780318, 3.41676633444817839873570090198, 3.66848253610843747969761339479, 3.68038106460513237966599122867, 4.00571812639642856180300766667, 4.23046028899371530564944203745, 4.47895403829506723129423182779, 4.78157744838321647734294124679, 4.93598913306011564123489085070, 4.94033382549607721366142257581, 5.27180845095302108205600725340, 5.58780656960811129490313654300, 5.70944635047447525128481600264, 5.88227541493848101245801609164, 6.18421010551790684908672606454

Graph of the $Z$-function along the critical line