Properties

Label 8-3276e4-1.1-c1e4-0-4
Degree $8$
Conductor $1.152\times 10^{14}$
Sign $1$
Analytic cond. $468256.$
Root an. cond. $5.11458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·5-s − 2·7-s − 2·11-s + 8·17-s − 4·19-s + 8·23-s + 19·25-s − 2·29-s + 12·31-s + 12·35-s + 12·37-s + 6·41-s + 4·43-s + 2·47-s − 11·49-s − 16·53-s + 12·55-s + 36·59-s + 6·61-s + 2·67-s − 6·71-s − 6·73-s + 4·77-s + 12·79-s + 28·83-s − 48·85-s + 8·89-s + ⋯
L(s)  = 1  − 2.68·5-s − 0.755·7-s − 0.603·11-s + 1.94·17-s − 0.917·19-s + 1.66·23-s + 19/5·25-s − 0.371·29-s + 2.15·31-s + 2.02·35-s + 1.97·37-s + 0.937·41-s + 0.609·43-s + 0.291·47-s − 1.57·49-s − 2.19·53-s + 1.61·55-s + 4.68·59-s + 0.768·61-s + 0.244·67-s − 0.712·71-s − 0.702·73-s + 0.455·77-s + 1.35·79-s + 3.07·83-s − 5.20·85-s + 0.847·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(468256.\)
Root analytic conductor: \(5.11458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.4072966656\)
\(L(\frac12)\) \(\approx\) \(0.4072966656\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 + 3 T + 4 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \) 4.5.g_r_cc_ga
11$D_4\times C_2$ \( 1 + 2 T - 6 T^{2} - 24 T^{3} - 65 T^{4} - 24 p T^{5} - 6 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \) 4.11.c_ag_ay_acn
17$D_{4}$ \( ( 1 - 4 T + 25 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.17.ai_co_amy_cpf
19$C_2^2$ \( ( 1 + 2 T - 15 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.19.e_aba_q_bqh
23$D_{4}$ \( ( 1 - 4 T + 37 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.23.ai_dm_asm_err
29$D_4\times C_2$ \( 1 + 2 T - 3 T^{2} - 102 T^{3} - 908 T^{4} - 102 p T^{5} - 3 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \) 4.29.c_ad_ady_abiy
31$D_4\times C_2$ \( 1 - 12 T + 59 T^{2} - 276 T^{3} + 1800 T^{4} - 276 p T^{5} + 59 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \) 4.31.am_ch_akq_crg
37$D_{4}$ \( ( 1 - 6 T + 31 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.37.am_du_abfk_jkt
41$C_2^2$ \( ( 1 - 3 T - 32 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \) 4.41.ag_acd_acc_hpc
43$D_4\times C_2$ \( 1 - 4 T - 61 T^{2} + 36 T^{3} + 3392 T^{4} + 36 p T^{5} - 61 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \) 4.43.ae_acj_bk_fam
47$D_4\times C_2$ \( 1 - 2 T - 39 T^{2} + 102 T^{3} - 548 T^{4} + 102 p T^{5} - 39 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \) 4.47.ac_abn_dy_avc
53$D_4\times C_2$ \( 1 + 16 T + 99 T^{2} + 816 T^{3} + 8272 T^{4} + 816 p T^{5} + 99 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \) 4.53.q_dv_bfk_mge
59$C_2$ \( ( 1 - 9 T + p T^{2} )^{4} \) 4.59.abk_bbu_antg_evlj
61$D_4\times C_2$ \( 1 - 6 T - 82 T^{2} + 24 T^{3} + 8007 T^{4} + 24 p T^{5} - 82 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \) 4.61.ag_ade_y_lvz
67$D_4\times C_2$ \( 1 - 2 T - 14 T^{2} + 232 T^{3} - 4433 T^{4} + 232 p T^{5} - 14 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \) 4.67.ac_ao_iy_agon
71$C_2^2$ \( ( 1 + 3 T - 62 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \) 4.71.g_ael_cc_wmu
73$D_4\times C_2$ \( 1 + 6 T - 67 T^{2} - 258 T^{3} + 2652 T^{4} - 258 p T^{5} - 67 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \) 4.73.g_acp_ajy_dya
79$D_4\times C_2$ \( 1 - 12 T - 37 T^{2} - 276 T^{3} + 15144 T^{4} - 276 p T^{5} - 37 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \) 4.79.am_abl_akq_wkm
83$D_{4}$ \( ( 1 - 14 T + 202 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \) 4.83.abc_xc_aluy_eyws
89$D_{4}$ \( ( 1 - 4 T + 169 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.89.ai_nq_adbk_crxj
97$D_4\times C_2$ \( 1 - 8 T - 29 T^{2} + 808 T^{3} - 6968 T^{4} + 808 p T^{5} - 29 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \) 4.97.ai_abd_bfc_akia
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.22821420968284779875899897002, −5.97780469191070074419715579674, −5.76567886372414996415646447082, −5.39290281425622847450091960082, −5.20561215445966151123828225057, −5.05208187622895771626809352016, −4.91997579049944508920076220854, −4.68134399355515999955952166498, −4.40029525633613950746450632606, −4.27255223110173750643800981371, −4.03289335097330279116193484568, −3.80683882653537407390112024577, −3.52618070267203318116713571954, −3.50371647164698518593554820944, −3.23280847572142610768591003334, −3.08841344103502479183831881320, −2.66643610231533340926665706512, −2.53302049605911130331275087766, −2.38235741896249559606411702123, −2.09194804716568770201147243826, −1.40632054867532144440845520141, −1.00255505817717536108688797525, −0.898599443695549121705973656640, −0.793640741383709337839839067665, −0.12892584956380843569603799464, 0.12892584956380843569603799464, 0.793640741383709337839839067665, 0.898599443695549121705973656640, 1.00255505817717536108688797525, 1.40632054867532144440845520141, 2.09194804716568770201147243826, 2.38235741896249559606411702123, 2.53302049605911130331275087766, 2.66643610231533340926665706512, 3.08841344103502479183831881320, 3.23280847572142610768591003334, 3.50371647164698518593554820944, 3.52618070267203318116713571954, 3.80683882653537407390112024577, 4.03289335097330279116193484568, 4.27255223110173750643800981371, 4.40029525633613950746450632606, 4.68134399355515999955952166498, 4.91997579049944508920076220854, 5.05208187622895771626809352016, 5.20561215445966151123828225057, 5.39290281425622847450091960082, 5.76567886372414996415646447082, 5.97780469191070074419715579674, 6.22821420968284779875899897002

Graph of the $Z$-function along the critical line