Properties

Label 8-3276e4-1.1-c1e4-0-3
Degree $8$
Conductor $1.152\times 10^{14}$
Sign $1$
Analytic cond. $468256.$
Root an. cond. $5.11458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·5-s − 8·7-s − 4·11-s + 4·17-s + 8·19-s + 4·23-s + 19·25-s + 2·29-s + 12·31-s − 48·35-s − 6·37-s − 6·41-s + 4·43-s − 2·47-s + 34·49-s + 16·53-s − 24·55-s + 18·59-s − 12·61-s − 4·67-s + 6·71-s − 6·73-s + 32·77-s + 12·79-s − 28·83-s + 24·85-s + 4·89-s + ⋯
L(s)  = 1  + 2.68·5-s − 3.02·7-s − 1.20·11-s + 0.970·17-s + 1.83·19-s + 0.834·23-s + 19/5·25-s + 0.371·29-s + 2.15·31-s − 8.11·35-s − 0.986·37-s − 0.937·41-s + 0.609·43-s − 0.291·47-s + 34/7·49-s + 2.19·53-s − 3.23·55-s + 2.34·59-s − 1.53·61-s − 0.488·67-s + 0.712·71-s − 0.702·73-s + 3.64·77-s + 1.35·79-s − 3.07·83-s + 2.60·85-s + 0.423·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(468256.\)
Root analytic conductor: \(5.11458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7176962984\)
\(L(\frac12)\) \(\approx\) \(0.7176962984\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 - 3 T + 4 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \) 4.5.ag_r_acc_ga
11$D_{4}$ \( ( 1 + 2 T + 10 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.11.e_y_dg_qo
17$D_4\times C_2$ \( 1 - 4 T - 9 T^{2} + 36 T^{3} + 64 T^{4} + 36 p T^{5} - 9 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \) 4.17.ae_aj_bk_cm
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \) 4.19.ai_dw_asu_epa
23$D_4\times C_2$ \( 1 - 4 T - 21 T^{2} + 36 T^{3} + 472 T^{4} + 36 p T^{5} - 21 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \) 4.23.ae_av_bk_se
29$D_4\times C_2$ \( 1 - 2 T - 3 T^{2} + 102 T^{3} - 908 T^{4} + 102 p T^{5} - 3 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \) 4.29.ac_ad_dy_abiy
31$D_4\times C_2$ \( 1 - 12 T + 59 T^{2} - 276 T^{3} + 1800 T^{4} - 276 p T^{5} + 59 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \) 4.31.am_ch_akq_crg
37$D_4\times C_2$ \( 1 + 6 T + 5 T^{2} - 258 T^{3} - 1740 T^{4} - 258 p T^{5} + 5 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \) 4.37.g_f_ajy_acoy
41$C_2^2$ \( ( 1 + 3 T - 32 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \) 4.41.g_acd_cc_hpc
43$D_4\times C_2$ \( 1 - 4 T - 61 T^{2} + 36 T^{3} + 3392 T^{4} + 36 p T^{5} - 61 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \) 4.43.ae_acj_bk_fam
47$D_4\times C_2$ \( 1 + 2 T - 39 T^{2} - 102 T^{3} - 548 T^{4} - 102 p T^{5} - 39 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \) 4.47.c_abn_ady_avc
53$D_4\times C_2$ \( 1 - 16 T + 99 T^{2} - 816 T^{3} + 8272 T^{4} - 816 p T^{5} + 99 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \) 4.53.aq_dv_abfk_mge
59$C_2^2$ \( ( 1 - 9 T + 22 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \) 4.59.as_ev_acec_zea
61$D_{4}$ \( ( 1 + 6 T + 118 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.61.m_km_deq_bmcs
67$D_{4}$ \( ( 1 + 2 T + 18 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.67.e_bo_nc_ook
71$C_2^2$ \( ( 1 - 3 T - 62 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \) 4.71.ag_ael_acc_wmu
73$D_4\times C_2$ \( 1 + 6 T - 67 T^{2} - 258 T^{3} + 2652 T^{4} - 258 p T^{5} - 67 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \) 4.73.g_acp_ajy_dya
79$D_4\times C_2$ \( 1 - 12 T - 37 T^{2} - 276 T^{3} + 15144 T^{4} - 276 p T^{5} - 37 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \) 4.79.am_abl_akq_wkm
83$D_{4}$ \( ( 1 + 14 T + 202 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \) 4.83.bc_xc_luy_eyws
89$D_4\times C_2$ \( 1 - 4 T - 153 T^{2} + 36 T^{3} + 19216 T^{4} + 36 p T^{5} - 153 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \) 4.89.ae_afx_bk_bclc
97$D_4\times C_2$ \( 1 - 8 T - 29 T^{2} + 808 T^{3} - 6968 T^{4} + 808 p T^{5} - 29 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \) 4.97.ai_abd_bfc_akia
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.03690192907921879435450295736, −5.92270993217392404188569791324, −5.74970637128859107220684149103, −5.63901433290271662882033062957, −5.42586248055096457160119856235, −5.20900469616996727047929121740, −5.08035871661537475829205361584, −4.69394769339451419388764193195, −4.68269685792458140903259557710, −4.39154725680430079599598646103, −3.85122376197854190836076040188, −3.74542202322772251876036517011, −3.43187292524303270495657240704, −3.23205401007979423873014784680, −3.21411188116625592028927876867, −2.95874704467622875122165543660, −2.53116993506486415703282903835, −2.41873997439199339824494777392, −2.31756486092501117727214018329, −2.31063050607431387676843782517, −1.42295946101361467895573275683, −1.26816065843818828775927677500, −1.11266705218093144008622675736, −0.831000436190284774277928330044, −0.11473523957196188851599905535, 0.11473523957196188851599905535, 0.831000436190284774277928330044, 1.11266705218093144008622675736, 1.26816065843818828775927677500, 1.42295946101361467895573275683, 2.31063050607431387676843782517, 2.31756486092501117727214018329, 2.41873997439199339824494777392, 2.53116993506486415703282903835, 2.95874704467622875122165543660, 3.21411188116625592028927876867, 3.23205401007979423873014784680, 3.43187292524303270495657240704, 3.74542202322772251876036517011, 3.85122376197854190836076040188, 4.39154725680430079599598646103, 4.68269685792458140903259557710, 4.69394769339451419388764193195, 5.08035871661537475829205361584, 5.20900469616996727047929121740, 5.42586248055096457160119856235, 5.63901433290271662882033062957, 5.74970637128859107220684149103, 5.92270993217392404188569791324, 6.03690192907921879435450295736

Graph of the $Z$-function along the critical line