Properties

Label 8-3276e4-1.1-c0e4-0-7
Degree $8$
Conductor $1.152\times 10^{14}$
Sign $1$
Analytic cond. $7.14503$
Root an. cond. $1.27864$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4-s + 2·8-s − 2·11-s − 4·13-s − 4·16-s + 4·22-s − 2·25-s + 8·26-s + 2·32-s − 2·44-s − 2·47-s + 49-s + 4·50-s − 4·52-s + 2·59-s − 2·61-s + 3·64-s − 4·71-s + 8·83-s − 4·88-s + 4·94-s − 2·98-s − 2·100-s − 8·104-s − 4·118-s + 3·121-s + ⋯
L(s)  = 1  − 2·2-s + 4-s + 2·8-s − 2·11-s − 4·13-s − 4·16-s + 4·22-s − 2·25-s + 8·26-s + 2·32-s − 2·44-s − 2·47-s + 49-s + 4·50-s − 4·52-s + 2·59-s − 2·61-s + 3·64-s − 4·71-s + 8·83-s − 4·88-s + 4·94-s − 2·98-s − 2·100-s − 8·104-s − 4·118-s + 3·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(7.14503\)
Root analytic conductor: \(1.27864\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.1146859812\)
\(L(\frac12)\) \(\approx\) \(0.1146859812\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T + T^{2} )^{2} \)
3 \( 1 \)
7$C_2^2$ \( 1 - T^{2} + T^{4} \)
13$C_1$ \( ( 1 + T )^{4} \)
good5$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
11$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
17$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
19$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
23$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
29$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
37$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
47$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
53$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
59$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
71$C_2$ \( ( 1 + T + T^{2} )^{4} \)
73$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
83$C_1$ \( ( 1 - T )^{8} \)
89$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.57464503643451506350158049354, −6.04757729883037197632298842768, −5.75249424727858857979715373454, −5.73246559929876121598362187633, −5.62707758165988694428048042972, −5.02552014589658849385257045979, −5.01707368579663065211162380782, −4.91794785765943762765491910636, −4.89976226452983566752527016789, −4.52060139676886798444498877032, −4.47978808689521952107383542376, −4.14394346993804071122728535733, −3.79309597750209771877145022790, −3.54118849983135223969336000700, −3.42643589125464309742913367000, −2.93187041382565972191823300973, −2.70921419243504948675166885938, −2.59535936472220846965741026032, −2.17913657261610824920769881037, −2.02761266057789950772448838537, −2.02411153060843349419624386589, −1.64885849300425404908807287389, −1.15677034462573123909217393740, −0.43216482128570272292205214159, −0.42110517541478887869394374544, 0.42110517541478887869394374544, 0.43216482128570272292205214159, 1.15677034462573123909217393740, 1.64885849300425404908807287389, 2.02411153060843349419624386589, 2.02761266057789950772448838537, 2.17913657261610824920769881037, 2.59535936472220846965741026032, 2.70921419243504948675166885938, 2.93187041382565972191823300973, 3.42643589125464309742913367000, 3.54118849983135223969336000700, 3.79309597750209771877145022790, 4.14394346993804071122728535733, 4.47978808689521952107383542376, 4.52060139676886798444498877032, 4.89976226452983566752527016789, 4.91794785765943762765491910636, 5.01707368579663065211162380782, 5.02552014589658849385257045979, 5.62707758165988694428048042972, 5.73246559929876121598362187633, 5.75249424727858857979715373454, 6.04757729883037197632298842768, 6.57464503643451506350158049354

Graph of the $Z$-function along the critical line