Properties

Label 8-3276e4-1.1-c0e4-0-3
Degree $8$
Conductor $1.152\times 10^{14}$
Sign $1$
Analytic cond. $7.14503$
Root an. cond. $1.27864$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 2·9-s − 4·13-s + 3·16-s − 2·17-s − 4·25-s + 2·29-s + 4·36-s − 2·37-s − 2·49-s + 8·52-s − 2·53-s − 2·61-s − 4·64-s + 4·68-s + 2·73-s + 3·81-s − 2·89-s + 8·100-s − 2·101-s − 2·109-s + 2·113-s − 4·116-s + 8·117-s − 121-s + 127-s + 131-s + ⋯
L(s)  = 1  − 2·4-s − 2·9-s − 4·13-s + 3·16-s − 2·17-s − 4·25-s + 2·29-s + 4·36-s − 2·37-s − 2·49-s + 8·52-s − 2·53-s − 2·61-s − 4·64-s + 4·68-s + 2·73-s + 3·81-s − 2·89-s + 8·100-s − 2·101-s − 2·109-s + 2·113-s − 4·116-s + 8·117-s − 121-s + 127-s + 131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(7.14503\)
Root analytic conductor: \(1.27864\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.02594672942\)
\(L(\frac12)\) \(\approx\) \(0.02594672942\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_1$ \( ( 1 + T )^{4} \)
good5$C_2$ \( ( 1 + T^{2} )^{4} \)
11$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
17$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
23$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
29$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
31$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
37$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{4} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
47$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
71$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
73$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
79$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
83$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
89$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.25500001055300190320458265266, −6.16007309175873238074459147244, −5.77676675814051124028833059003, −5.58717946237346780385369085788, −5.51270502230422786508177544075, −5.16571394273538266679996097262, −5.08361688587282165193779316352, −4.90904345705947553797700521156, −4.76900639652470762333503921009, −4.46675937939781558362185920320, −4.26046776857026395185603693903, −4.22183974293025212001512545146, −4.10885032811200299268304876673, −3.38993849866298236774121622613, −3.27329616628742359879406570529, −3.24878350069210109116494865495, −3.17047868209011033298413230621, −2.45528202032532448169567856776, −2.38574991019229485305524845692, −2.35882181545920643829113671474, −2.03457089197386359433099461883, −1.52583904989977116921717146637, −1.45111164042717396505244491998, −0.39868599449444883740415645546, −0.14077357386162249248709802750, 0.14077357386162249248709802750, 0.39868599449444883740415645546, 1.45111164042717396505244491998, 1.52583904989977116921717146637, 2.03457089197386359433099461883, 2.35882181545920643829113671474, 2.38574991019229485305524845692, 2.45528202032532448169567856776, 3.17047868209011033298413230621, 3.24878350069210109116494865495, 3.27329616628742359879406570529, 3.38993849866298236774121622613, 4.10885032811200299268304876673, 4.22183974293025212001512545146, 4.26046776857026395185603693903, 4.46675937939781558362185920320, 4.76900639652470762333503921009, 4.90904345705947553797700521156, 5.08361688587282165193779316352, 5.16571394273538266679996097262, 5.51270502230422786508177544075, 5.58717946237346780385369085788, 5.77676675814051124028833059003, 6.16007309175873238074459147244, 6.25500001055300190320458265266

Graph of the $Z$-function along the critical line