Properties

Label 8-3267e4-1.1-c0e4-0-3
Degree $8$
Conductor $1.139\times 10^{14}$
Sign $1$
Analytic cond. $7.06683$
Root an. cond. $1.27688$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·4-s + 10·16-s − 4·25-s + 20·64-s + 4·97-s − 16·100-s + 4·103-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯
L(s)  = 1  + 4·4-s + 10·16-s − 4·25-s + 20·64-s + 4·97-s − 16·100-s + 4·103-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{12} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(7.06683\)
Root analytic conductor: \(1.27688\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{12} \cdot 11^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(6.058372085\)
\(L(\frac12)\) \(\approx\) \(6.058372085\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
5$C_2$ \( ( 1 + T^{2} )^{4} \)
7$C_2^3$ \( 1 - T^{4} + T^{8} \)
13$C_2^3$ \( 1 - T^{4} + T^{8} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
19$C_2^2$ \( ( 1 + T^{4} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{4} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
31$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{4} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
43$C_2^2$ \( ( 1 + T^{4} )^{2} \)
47$C_2$ \( ( 1 + T^{2} )^{4} \)
53$C_2$ \( ( 1 + T^{2} )^{4} \)
59$C_2$ \( ( 1 + T^{2} )^{4} \)
61$C_2^2$ \( ( 1 + T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{4} \)
73$C_2^3$ \( 1 - T^{4} + T^{8} \)
79$C_2^3$ \( 1 - T^{4} + T^{8} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
89$C_2$ \( ( 1 + T^{2} )^{4} \)
97$C_2$ \( ( 1 - T + T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.47896242437598672541613328868, −6.10000461034407803781073997851, −5.96527130959385211439344471664, −5.93224957270222222737158279360, −5.71557868154761541621362927897, −5.38588173126502152311447486104, −5.29381553457790105101882656502, −5.05556988636564458177397510377, −4.78494384024374958637999385871, −4.41526534156070664886655197547, −4.10294859997713759860091138422, −3.83425013407645239092474736472, −3.82070752023145197271420709173, −3.48356403681026982115537413227, −3.29401099533779911087651522055, −3.05550009227584157588296114351, −2.94873373982252916440742829324, −2.58563405145722755519026087337, −2.22634970037347322430525235748, −2.08904261085142173650190533901, −1.99624627511606155583601100987, −1.80857182052585382954070619772, −1.62842713776413164374217909733, −0.987091595782885604660525575453, −0.895633476524245239422701637981, 0.895633476524245239422701637981, 0.987091595782885604660525575453, 1.62842713776413164374217909733, 1.80857182052585382954070619772, 1.99624627511606155583601100987, 2.08904261085142173650190533901, 2.22634970037347322430525235748, 2.58563405145722755519026087337, 2.94873373982252916440742829324, 3.05550009227584157588296114351, 3.29401099533779911087651522055, 3.48356403681026982115537413227, 3.82070752023145197271420709173, 3.83425013407645239092474736472, 4.10294859997713759860091138422, 4.41526534156070664886655197547, 4.78494384024374958637999385871, 5.05556988636564458177397510377, 5.29381553457790105101882656502, 5.38588173126502152311447486104, 5.71557868154761541621362927897, 5.93224957270222222737158279360, 5.96527130959385211439344471664, 6.10000461034407803781073997851, 6.47896242437598672541613328868

Graph of the $Z$-function along the critical line