L(s) = 1 | + 4·4-s + 10·16-s − 4·25-s + 20·64-s + 4·97-s − 16·100-s + 4·103-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯ |
L(s) = 1 | + 4·4-s + 10·16-s − 4·25-s + 20·64-s + 4·97-s − 16·100-s + 4·103-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯ |
Λ(s)=(=((312⋅118)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((312⋅118)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
312⋅118
|
Sign: |
1
|
Analytic conductor: |
7.06683 |
Root analytic conductor: |
1.27688 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 312⋅118, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
6.058372085 |
L(21) |
≈ |
6.058372085 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.47896242437598672541613328868, −6.10000461034407803781073997851, −5.96527130959385211439344471664, −5.93224957270222222737158279360, −5.71557868154761541621362927897, −5.38588173126502152311447486104, −5.29381553457790105101882656502, −5.05556988636564458177397510377, −4.78494384024374958637999385871, −4.41526534156070664886655197547, −4.10294859997713759860091138422, −3.83425013407645239092474736472, −3.82070752023145197271420709173, −3.48356403681026982115537413227, −3.29401099533779911087651522055, −3.05550009227584157588296114351, −2.94873373982252916440742829324, −2.58563405145722755519026087337, −2.22634970037347322430525235748, −2.08904261085142173650190533901, −1.99624627511606155583601100987, −1.80857182052585382954070619772, −1.62842713776413164374217909733, −0.987091595782885604660525575453, −0.895633476524245239422701637981,
0.895633476524245239422701637981, 0.987091595782885604660525575453, 1.62842713776413164374217909733, 1.80857182052585382954070619772, 1.99624627511606155583601100987, 2.08904261085142173650190533901, 2.22634970037347322430525235748, 2.58563405145722755519026087337, 2.94873373982252916440742829324, 3.05550009227584157588296114351, 3.29401099533779911087651522055, 3.48356403681026982115537413227, 3.82070752023145197271420709173, 3.83425013407645239092474736472, 4.10294859997713759860091138422, 4.41526534156070664886655197547, 4.78494384024374958637999385871, 5.05556988636564458177397510377, 5.29381553457790105101882656502, 5.38588173126502152311447486104, 5.71557868154761541621362927897, 5.93224957270222222737158279360, 5.96527130959385211439344471664, 6.10000461034407803781073997851, 6.47896242437598672541613328868