Properties

Label 8-325e4-1.1-c3e4-0-1
Degree $8$
Conductor $11156640625$
Sign $1$
Analytic cond. $135206.$
Root an. cond. $4.37899$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 23·4-s − 28·9-s − 172·11-s + 273·16-s − 332·19-s − 240·29-s − 156·31-s − 644·36-s − 144·41-s − 3.95e3·44-s − 344·49-s − 36·59-s + 1.76e3·61-s + 1.86e3·64-s + 1.26e3·71-s − 7.63e3·76-s + 360·79-s − 870·81-s + 1.70e3·89-s + 4.81e3·99-s − 1.43e3·101-s − 2.00e3·109-s − 5.52e3·116-s + 1.32e4·121-s − 3.58e3·124-s + 127-s + 131-s + ⋯
L(s)  = 1  + 23/8·4-s − 1.03·9-s − 4.71·11-s + 4.26·16-s − 4.00·19-s − 1.53·29-s − 0.903·31-s − 2.98·36-s − 0.548·41-s − 13.5·44-s − 1.00·49-s − 0.0794·59-s + 3.71·61-s + 3.63·64-s + 2.11·71-s − 11.5·76-s + 0.512·79-s − 1.19·81-s + 2.02·89-s + 4.88·99-s − 1.41·101-s − 1.76·109-s − 4.41·116-s + 9.91·121-s − 2.59·124-s + 0.000698·127-s + 0.000666·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(135206.\)
Root analytic conductor: \(4.37899\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{8} \cdot 13^{4} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(1.138318708\)
\(L(\frac12)\) \(\approx\) \(1.138318708\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
13$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
good2$D_4\times C_2$ \( 1 - 23 T^{2} + p^{8} T^{4} - 23 p^{6} T^{6} + p^{12} T^{8} \)
3$C_2^2$ \( ( 1 + 14 T^{2} + p^{6} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 + 344 T^{2} + 207694 T^{4} + 344 p^{6} T^{6} + p^{12} T^{8} \)
11$D_{4}$ \( ( 1 + 86 T + 4494 T^{2} + 86 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 10556 T^{2} + 72720454 T^{4} - 10556 p^{6} T^{6} + p^{12} T^{8} \)
19$D_{4}$ \( ( 1 + 166 T + 18550 T^{2} + 166 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 524 p T^{2} + 269715654 T^{4} - 524 p^{7} T^{6} + p^{12} T^{8} \)
29$D_{4}$ \( ( 1 + 120 T + 49046 T^{2} + 120 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 + 78 T - 6370 T^{2} + 78 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 126796 T^{2} + 8436922422 T^{4} - 126796 p^{6} T^{6} + p^{12} T^{8} \)
41$D_{4}$ \( ( 1 + 72 T + 73790 T^{2} + 72 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 303460 T^{2} + 35651554198 T^{4} - 303460 p^{6} T^{6} + p^{12} T^{8} \)
47$D_4\times C_2$ \( 1 - 317096 T^{2} + 44555033134 T^{4} - 317096 p^{6} T^{6} + p^{12} T^{8} \)
53$D_4\times C_2$ \( 1 - 438764 T^{2} + 86315015094 T^{4} - 438764 p^{6} T^{6} + p^{12} T^{8} \)
59$D_{4}$ \( ( 1 + 18 T + 282166 T^{2} + 18 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 442 T + p^{3} T^{2} )^{4} \)
67$D_4\times C_2$ \( 1 + 45640 T^{2} - 146122156962 T^{4} + 45640 p^{6} T^{6} + p^{12} T^{8} \)
71$D_{4}$ \( ( 1 - 634 T + 397278 T^{2} - 634 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 594652 T^{2} + 389343894054 T^{4} - 594652 p^{6} T^{6} + p^{12} T^{8} \)
79$D_{4}$ \( ( 1 - 180 T + 993566 T^{2} - 180 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 1628296 T^{2} + 1213750645950 T^{4} - 1628296 p^{6} T^{6} + p^{12} T^{8} \)
89$D_{4}$ \( ( 1 - 852 T + 1530214 T^{2} - 852 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 + 2290436 T^{2} + 2974426681990 T^{4} + 2290436 p^{6} T^{6} + p^{12} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.150591127862362749051870063942, −7.62759326969094039406532574322, −7.62422430152429718988456763772, −7.10563133339860375452582719594, −6.89727074695931173133426326957, −6.82173456867997246230694191276, −6.39600827508622411533346037847, −6.28051374851687058742028141414, −5.91938440011778565118135270875, −5.48809667409390659055116116946, −5.48589894511406454913312404391, −5.23391558015119175413089245744, −5.05594185050115871998939385649, −4.45443838445958258044302562530, −4.08170195147836979093341666490, −3.77134612938288975070328446811, −3.13416266728827836970972209449, −3.03176666626076553117189387990, −2.65173580761558458183699484979, −2.31923059261535261809190180376, −2.26006530379529034969869267922, −1.95127736316067166352825301833, −1.80418180991444037869452657697, −0.48992907040486426228021143251, −0.22707981122104294905158700584, 0.22707981122104294905158700584, 0.48992907040486426228021143251, 1.80418180991444037869452657697, 1.95127736316067166352825301833, 2.26006530379529034969869267922, 2.31923059261535261809190180376, 2.65173580761558458183699484979, 3.03176666626076553117189387990, 3.13416266728827836970972209449, 3.77134612938288975070328446811, 4.08170195147836979093341666490, 4.45443838445958258044302562530, 5.05594185050115871998939385649, 5.23391558015119175413089245744, 5.48589894511406454913312404391, 5.48809667409390659055116116946, 5.91938440011778565118135270875, 6.28051374851687058742028141414, 6.39600827508622411533346037847, 6.82173456867997246230694191276, 6.89727074695931173133426326957, 7.10563133339860375452582719594, 7.62422430152429718988456763772, 7.62759326969094039406532574322, 8.150591127862362749051870063942

Graph of the $Z$-function along the critical line