Properties

Label 8-325e4-1.1-c1e4-0-6
Degree $8$
Conductor $11156640625$
Sign $1$
Analytic cond. $45.3567$
Root an. cond. $1.61094$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3·4-s + 4·7-s + 4·8-s + 9-s − 4·11-s + 4·13-s + 4·14-s + 6·16-s + 2·17-s + 18-s − 4·19-s − 4·22-s + 12·23-s + 4·26-s + 12·28-s + 6·29-s + 6·32-s + 2·34-s + 3·36-s + 6·37-s − 4·38-s − 6·41-s − 8·43-s − 12·44-s + 12·46-s − 16·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 3/2·4-s + 1.51·7-s + 1.41·8-s + 1/3·9-s − 1.20·11-s + 1.10·13-s + 1.06·14-s + 3/2·16-s + 0.485·17-s + 0.235·18-s − 0.917·19-s − 0.852·22-s + 2.50·23-s + 0.784·26-s + 2.26·28-s + 1.11·29-s + 1.06·32-s + 0.342·34-s + 1/2·36-s + 0.986·37-s − 0.648·38-s − 0.937·41-s − 1.21·43-s − 1.80·44-s + 1.76·46-s − 2.33·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(45.3567\)
Root analytic conductor: \(1.61094\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(6.040552917\)
\(L(\frac12)\) \(\approx\) \(6.040552917\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
good2$D_4\times C_2$ \( 1 - T - p T^{2} + T^{3} + 3 T^{4} + p T^{5} - p^{3} T^{6} - p^{3} T^{7} + p^{4} T^{8} \)
3$C_2^3$ \( 1 - T^{2} - 8 T^{4} - p^{2} T^{6} + p^{4} T^{8} \)
7$D_4\times C_2$ \( 1 - 4 T + 3 T^{2} + 4 T^{3} + 8 T^{4} + 4 p T^{5} + 3 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 + 4 T - 5 T^{2} - 4 T^{3} + 144 T^{4} - 4 p T^{5} - 5 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 - 2 T - 11 T^{2} + 38 T^{3} - 132 T^{4} + 38 p T^{5} - 11 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 + 4 T - 21 T^{2} - 4 T^{3} + 704 T^{4} - 4 p T^{5} - 21 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 12 T + 67 T^{2} - 372 T^{3} + 2088 T^{4} - 372 p T^{5} + 67 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 6 T - 11 T^{2} + 66 T^{3} + 324 T^{4} + 66 p T^{5} - 11 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
31$C_2$ \( ( 1 + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 3 T - 28 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 + 6 T + 25 T^{2} - 426 T^{3} - 3036 T^{4} - 426 p T^{5} + 25 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 + 8 T - 33 T^{2} + 88 T^{3} + 4808 T^{4} + 88 p T^{5} - 33 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 + 8 T + 30 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
59$D_4\times C_2$ \( 1 + 12 T + 35 T^{2} - 108 T^{3} - 96 T^{4} - 108 p T^{5} + 35 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2$$\times$$C_2^2$ \( ( 1 + 2 T + p T^{2} )^{2}( 1 - 2 T - 57 T^{2} - 2 p T^{3} + p^{2} T^{4} ) \)
67$D_4\times C_2$ \( 1 - 8 T - 41 T^{2} + 232 T^{3} + 2248 T^{4} + 232 p T^{5} - 41 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 8 T - 89 T^{2} - 88 T^{3} + 13824 T^{4} - 88 p T^{5} - 89 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 86 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 9 T - 8 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 2 T - 171 T^{2} + 38 T^{3} + 20828 T^{4} + 38 p T^{5} - 171 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.040107285992264161983795794839, −8.029868090796296025913096924731, −7.972661243778127687152663135384, −7.946667428119654024854326274085, −7.55347861868168264227253097549, −6.94088818195919130485061650653, −6.73023633841948868098698111339, −6.66629651106512238511901918883, −6.53467463696251984531624811190, −6.28172856525808172723090059354, −5.71608149209922709986782640188, −5.33628108275743659552243867004, −5.18610495781063016831296549462, −5.12048435712763670274353868291, −4.69258707770257581007072838637, −4.47698604952670919961962973509, −4.22859764591045912876984487004, −3.60236814137968309890456470238, −3.21905557787477084814630647978, −3.17444443030196359609939706780, −2.77478689054182247493250064317, −2.05139155205742518911888111467, −2.03214319651505842861828524135, −1.41914531227337058377371048762, −1.07479646069549256135632957733, 1.07479646069549256135632957733, 1.41914531227337058377371048762, 2.03214319651505842861828524135, 2.05139155205742518911888111467, 2.77478689054182247493250064317, 3.17444443030196359609939706780, 3.21905557787477084814630647978, 3.60236814137968309890456470238, 4.22859764591045912876984487004, 4.47698604952670919961962973509, 4.69258707770257581007072838637, 5.12048435712763670274353868291, 5.18610495781063016831296549462, 5.33628108275743659552243867004, 5.71608149209922709986782640188, 6.28172856525808172723090059354, 6.53467463696251984531624811190, 6.66629651106512238511901918883, 6.73023633841948868098698111339, 6.94088818195919130485061650653, 7.55347861868168264227253097549, 7.946667428119654024854326274085, 7.972661243778127687152663135384, 8.029868090796296025913096924731, 8.040107285992264161983795794839

Graph of the $Z$-function along the critical line