Properties

Label 8-3150e4-1.1-c2e4-0-4
Degree $8$
Conductor $9.846\times 10^{13}$
Sign $1$
Analytic cond. $5.42728\times 10^{7}$
Root an. cond. $9.26451$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s − 4·13-s + 12·16-s + 100·19-s + 24·31-s − 144·37-s + 116·43-s + 14·49-s + 16·52-s − 80·61-s − 32·64-s + 216·67-s − 300·73-s − 400·76-s − 400·79-s + 72·97-s − 84·103-s + 224·109-s + 252·121-s − 96·124-s + 127-s + 131-s + 137-s + 139-s + 576·148-s + 149-s + 151-s + ⋯
L(s)  = 1  − 4-s − 0.307·13-s + 3/4·16-s + 5.26·19-s + 0.774·31-s − 3.89·37-s + 2.69·43-s + 2/7·49-s + 4/13·52-s − 1.31·61-s − 1/2·64-s + 3.22·67-s − 4.10·73-s − 5.26·76-s − 5.06·79-s + 0.742·97-s − 0.815·103-s + 2.05·109-s + 2.08·121-s − 0.774·124-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 3.89·148-s + 0.00671·149-s + 0.00662·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(5.42728\times 10^{7}\)
Root analytic conductor: \(9.26451\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(3.806344477\)
\(L(\frac12)\) \(\approx\) \(3.806344477\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p T^{2} )^{2} \)
3 \( 1 \)
5 \( 1 \)
7$C_2$ \( ( 1 - p T^{2} )^{2} \)
good11$D_4\times C_2$ \( 1 - 252 T^{2} + 34511 T^{4} - 252 p^{4} T^{6} + p^{8} T^{8} \)
13$D_{4}$ \( ( 1 + 2 T + 164 T^{2} + 2 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 888 T^{2} + 360146 T^{4} - 888 p^{4} T^{6} + p^{8} T^{8} \)
19$D_{4}$ \( ( 1 - 50 T + 1340 T^{2} - 50 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 812 T^{2} + 581375 T^{4} - 812 p^{4} T^{6} + p^{8} T^{8} \)
29$D_4\times C_2$ \( 1 - 2788 T^{2} + 3352695 T^{4} - 2788 p^{4} T^{6} + p^{8} T^{8} \)
31$D_{4}$ \( ( 1 - 12 T + 1930 T^{2} - 12 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
37$D_{4}$ \( ( 1 + 72 T + 3187 T^{2} + 72 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 6276 T^{2} + 15449174 T^{4} - 6276 p^{4} T^{6} + p^{8} T^{8} \)
43$D_{4}$ \( ( 1 - 58 T + 3839 T^{2} - 58 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 4272 T^{2} + 9382658 T^{4} - 4272 p^{4} T^{6} + p^{8} T^{8} \)
53$D_4\times C_2$ \( 1 - 8960 T^{2} + 34984034 T^{4} - 8960 p^{4} T^{6} + p^{8} T^{8} \)
59$D_4\times C_2$ \( 1 - 6840 T^{2} + 30991922 T^{4} - 6840 p^{4} T^{6} + p^{8} T^{8} \)
61$D_{4}$ \( ( 1 + 40 T + 5574 T^{2} + 40 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 - 108 T + 6791 T^{2} - 108 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 3276 T^{2} - 12941521 T^{4} - 3276 p^{4} T^{6} + p^{8} T^{8} \)
73$D_{4}$ \( ( 1 + 150 T + 16108 T^{2} + 150 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + 200 T + 22139 T^{2} + 200 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 18692 T^{2} + 182016950 T^{4} - 18692 p^{4} T^{6} + p^{8} T^{8} \)
89$D_4\times C_2$ \( 1 + 1008 T^{2} + 115251266 T^{4} + 1008 p^{4} T^{6} + p^{8} T^{8} \)
97$D_{4}$ \( ( 1 - 36 T + 13654 T^{2} - 36 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.79102211252777953358601089034, −5.68363869374666941326551778747, −5.67632317310966218186926154204, −5.33171293001931046184858915227, −5.12092919705318355311538786510, −5.08744298881667388309998786324, −4.72922748802880580921930214289, −4.62612792162764018032784401743, −4.27063365342100212400430576366, −4.22795510829856981420319457907, −3.82337761266811092016555880402, −3.67021604602178012522855661075, −3.33390868946035856644329841779, −3.22921605627760676297592645180, −3.05941640484130257429104734311, −2.93094268215750174166671715473, −2.57948675758706902544691584389, −2.37050636178684380213507036993, −1.84608061869725282769178080941, −1.49108780204002534705367932769, −1.46326666346584316021645984702, −1.11292861951753441717489165645, −0.912967803661233334172730827587, −0.49111395396322473496093690781, −0.27340423764891176012295353630, 0.27340423764891176012295353630, 0.49111395396322473496093690781, 0.912967803661233334172730827587, 1.11292861951753441717489165645, 1.46326666346584316021645984702, 1.49108780204002534705367932769, 1.84608061869725282769178080941, 2.37050636178684380213507036993, 2.57948675758706902544691584389, 2.93094268215750174166671715473, 3.05941640484130257429104734311, 3.22921605627760676297592645180, 3.33390868946035856644329841779, 3.67021604602178012522855661075, 3.82337761266811092016555880402, 4.22795510829856981420319457907, 4.27063365342100212400430576366, 4.62612792162764018032784401743, 4.72922748802880580921930214289, 5.08744298881667388309998786324, 5.12092919705318355311538786510, 5.33171293001931046184858915227, 5.67632317310966218186926154204, 5.68363869374666941326551778747, 5.79102211252777953358601089034

Graph of the $Z$-function along the critical line