Properties

Label 8-2e36-1.1-c3e4-0-13
Degree $8$
Conductor $68719476736$
Sign $1$
Analytic cond. $832806.$
Root an. cond. $5.49626$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 44·5-s − 92·13-s + 384·17-s + 968·25-s + 412·29-s − 300·37-s − 68·49-s + 1.30e3·53-s − 156·61-s − 4.04e3·65-s + 1.26e3·81-s + 1.68e4·85-s + 1.85e3·97-s + 3.79e3·101-s + 2.33e3·109-s − 4.47e3·113-s + 1.61e4·125-s + 127-s + 131-s + 137-s + 139-s + 1.81e4·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 3.93·5-s − 1.96·13-s + 5.47·17-s + 7.74·25-s + 2.63·29-s − 1.33·37-s − 0.198·49-s + 3.36·53-s − 0.327·61-s − 7.72·65-s + 1.73·81-s + 21.5·85-s + 1.94·97-s + 3.73·101-s + 2.04·109-s − 3.72·113-s + 11.5·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 10.3·145-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{36}\)
Sign: $1$
Analytic conductor: \(832806.\)
Root analytic conductor: \(5.49626\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{36} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(27.34669705\)
\(L(\frac12)\) \(\approx\) \(27.34669705\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$C_2^3$ \( 1 - 1262 T^{4} + p^{12} T^{8} \)
5$C_2^2$ \( ( 1 - 22 T + 242 T^{2} - 22 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 34 T^{2} + p^{6} T^{4} )^{2} \)
11$C_2^3$ \( 1 - 3050318 T^{4} + p^{12} T^{8} \)
13$C_2^2$ \( ( 1 + 46 T + 1058 T^{2} + 46 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 96 T + p^{3} T^{2} )^{4} \)
19$C_2^3$ \( 1 - 89434798 T^{4} + p^{12} T^{8} \)
23$C_2^2$ \( ( 1 - 10814 T^{2} + p^{6} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 206 T + 21218 T^{2} - 206 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 20862 T^{2} + p^{6} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 150 T + 11250 T^{2} + 150 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 40498 T^{2} + p^{6} T^{4} )^{2} \)
43$C_2^3$ \( 1 - 11798591182 T^{4} + p^{12} T^{8} \)
47$C_2^2$ \( ( 1 + 199646 T^{2} + p^{6} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 650 T + 211250 T^{2} - 650 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
59$C_2^3$ \( 1 - 878 p^{4} T^{4} + p^{12} T^{8} \)
61$C_2^2$ \( ( 1 + 78 T + 3042 T^{2} + 78 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
67$C_2^3$ \( 1 - 123064007662 T^{4} + p^{12} T^{8} \)
71$C_2^2$ \( ( 1 - 581342 T^{2} + p^{6} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 517010 T^{2} + p^{6} T^{4} )^{2} \)
79$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
83$C_2^3$ \( 1 - 298648058542 T^{4} + p^{12} T^{8} \)
89$C_2^2$ \( ( 1 + 578162 T^{2} + p^{6} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 464 T + p^{3} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.57771093479830170796445556351, −7.08905169218016160761473533387, −6.83255636956535778830630576236, −6.76777146624414154957104501040, −6.25735751552326424173955829352, −6.11404855110593517759497803336, −5.95120518406224164900918631574, −5.57806732391055630203862994972, −5.47938608427385595840416276788, −5.32221601844909085213590057383, −5.19472193075313141018444449403, −4.84305889544423433269792926740, −4.65607823787197854691941357074, −4.16152320454934550461872291377, −3.52742088288099054857736747522, −3.27806816098684393484094731038, −3.24727252525557145520415739928, −2.73750596983686504386918714068, −2.49245756238321598431887803574, −2.23197568879232002540408932477, −1.79266415347160940507018781201, −1.69249694803514167599263037332, −1.04692725358005885663544287182, −0.890680600191145394233636333162, −0.70967894729695865639604611529, 0.70967894729695865639604611529, 0.890680600191145394233636333162, 1.04692725358005885663544287182, 1.69249694803514167599263037332, 1.79266415347160940507018781201, 2.23197568879232002540408932477, 2.49245756238321598431887803574, 2.73750596983686504386918714068, 3.24727252525557145520415739928, 3.27806816098684393484094731038, 3.52742088288099054857736747522, 4.16152320454934550461872291377, 4.65607823787197854691941357074, 4.84305889544423433269792926740, 5.19472193075313141018444449403, 5.32221601844909085213590057383, 5.47938608427385595840416276788, 5.57806732391055630203862994972, 5.95120518406224164900918631574, 6.11404855110593517759497803336, 6.25735751552326424173955829352, 6.76777146624414154957104501040, 6.83255636956535778830630576236, 7.08905169218016160761473533387, 7.57771093479830170796445556351

Graph of the $Z$-function along the critical line