Properties

Label 8-294e4-1.1-c5e4-0-3
Degree $8$
Conductor $7471182096$
Sign $1$
Analytic cond. $4.94346\times 10^{6}$
Root an. cond. $6.86679$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 18·3-s + 16·4-s − 108·5-s − 144·6-s − 128·8-s + 81·9-s − 864·10-s − 124·11-s − 288·12-s + 1.44e3·13-s + 1.94e3·15-s − 1.02e3·16-s + 1.26e3·17-s + 648·18-s − 360·19-s − 1.72e3·20-s − 992·22-s − 6.52e3·23-s + 2.30e3·24-s + 6.71e3·25-s + 1.15e4·26-s + 1.45e3·27-s + 1.41e4·29-s + 1.55e4·30-s − 5.90e3·31-s − 2.04e3·32-s + ⋯
L(s)  = 1  + 1.41·2-s − 1.15·3-s + 1/2·4-s − 1.93·5-s − 1.63·6-s − 0.707·8-s + 1/3·9-s − 2.73·10-s − 0.308·11-s − 0.577·12-s + 2.36·13-s + 2.23·15-s − 16-s + 1.05·17-s + 0.471·18-s − 0.228·19-s − 0.965·20-s − 0.436·22-s − 2.57·23-s + 0.816·24-s + 2.14·25-s + 3.34·26-s + 0.384·27-s + 3.13·29-s + 3.15·30-s − 1.10·31-s − 0.353·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(4.94346\times 10^{6}\)
Root analytic conductor: \(6.86679\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 7^{8} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(1.473636926\)
\(L(\frac12)\) \(\approx\) \(1.473636926\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )^{2} \)
3$C_2$ \( ( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
7 \( 1 \)
good5$D_4\times C_2$ \( 1 + 108 T + 4948 T^{2} + 50328 T^{3} - 1110969 T^{4} + 50328 p^{5} T^{5} + 4948 p^{10} T^{6} + 108 p^{15} T^{7} + p^{20} T^{8} \)
11$D_4\times C_2$ \( 1 + 124 T - 278818 T^{2} - 3460592 T^{3} + 58136364859 T^{4} - 3460592 p^{5} T^{5} - 278818 p^{10} T^{6} + 124 p^{15} T^{7} + p^{20} T^{8} \)
13$D_{4}$ \( ( 1 - 720 T + 673736 T^{2} - 720 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 1260 T - 1209092 T^{2} + 54207720 T^{3} + 3551327269215 T^{4} + 54207720 p^{5} T^{5} - 1209092 p^{10} T^{6} - 1260 p^{15} T^{7} + p^{20} T^{8} \)
19$D_4\times C_2$ \( 1 + 360 T - 4647630 T^{2} - 62988480 T^{3} + 16369957784699 T^{4} - 62988480 p^{5} T^{5} - 4647630 p^{10} T^{6} + 360 p^{15} T^{7} + p^{20} T^{8} \)
23$D_4\times C_2$ \( 1 + 6524 T + 19335014 T^{2} + 2937183088 p T^{3} + 423716043763 p^{2} T^{4} + 2937183088 p^{6} T^{5} + 19335014 p^{10} T^{6} + 6524 p^{15} T^{7} + p^{20} T^{8} \)
29$D_{4}$ \( ( 1 - 7088 T + 48216146 T^{2} - 7088 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 + 5904 T - 23971190 T^{2} + 9269894016 T^{3} + 1643220565216419 T^{4} + 9269894016 p^{5} T^{5} - 23971190 p^{10} T^{6} + 5904 p^{15} T^{7} + p^{20} T^{8} \)
37$D_4\times C_2$ \( 1 - 6040 T - 74621402 T^{2} + 166612868480 T^{3} + 5005514179302955 T^{4} + 166612868480 p^{5} T^{5} - 74621402 p^{10} T^{6} - 6040 p^{15} T^{7} + p^{20} T^{8} \)
41$D_{4}$ \( ( 1 + 17388 T + 216792980 T^{2} + 17388 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 + 608 T + 164053110 T^{2} + 608 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 648 p T + 298147738 T^{2} - 110633159232 p T^{3} + 130837578639633603 T^{4} - 110633159232 p^{6} T^{5} + 298147738 p^{10} T^{6} - 648 p^{16} T^{7} + p^{20} T^{8} \)
53$D_4\times C_2$ \( 1 + 3964 T - 578718526 T^{2} - 959126126096 T^{3} + 171890491073351707 T^{4} - 959126126096 p^{5} T^{5} - 578718526 p^{10} T^{6} + 3964 p^{15} T^{7} + p^{20} T^{8} \)
59$D_4\times C_2$ \( 1 + 40752 T - 180305678 T^{2} + 16756512663168 T^{3} + 1690986043017054027 T^{4} + 16756512663168 p^{5} T^{5} - 180305678 p^{10} T^{6} + 40752 p^{15} T^{7} + p^{20} T^{8} \)
61$D_4\times C_2$ \( 1 - 1368 T - 1543594872 T^{2} + 196617586608 T^{3} + 1673542562621074391 T^{4} + 196617586608 p^{5} T^{5} - 1543594872 p^{10} T^{6} - 1368 p^{15} T^{7} + p^{20} T^{8} \)
67$D_4\times C_2$ \( 1 - 16224 T - 549961574 T^{2} + 30615831207936 T^{3} - 1516953966778043781 T^{4} + 30615831207936 p^{5} T^{5} - 549961574 p^{10} T^{6} - 16224 p^{15} T^{7} + p^{20} T^{8} \)
71$D_{4}$ \( ( 1 + 3204 T - 212201462 T^{2} + 3204 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 + 23976 T + 506144208 T^{2} - 97760673100368 T^{3} - 5484607792703379793 T^{4} - 97760673100368 p^{5} T^{5} + 506144208 p^{10} T^{6} + 23976 p^{15} T^{7} + p^{20} T^{8} \)
79$D_4\times C_2$ \( 1 - 1040 p T - 1035403070 T^{2} - 1696818106880 p T^{3} + 30377412596963147299 T^{4} - 1696818106880 p^{6} T^{5} - 1035403070 p^{10} T^{6} - 1040 p^{16} T^{7} + p^{20} T^{8} \)
83$D_{4}$ \( ( 1 - 173736 T + 14732805782 T^{2} - 173736 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 + 200556 T + 19064326876 T^{2} + 2003607258829272 T^{3} + \)\(19\!\cdots\!35\)\( T^{4} + 2003607258829272 p^{5} T^{5} + 19064326876 p^{10} T^{6} + 200556 p^{15} T^{7} + p^{20} T^{8} \)
97$D_{4}$ \( ( 1 - 251928 T + 32348722272 T^{2} - 251928 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.63111350276851282839529306859, −7.58033851108019026727045520910, −6.87432692669783178625408153198, −6.85144687383743232668091520067, −6.46747154302176764150305047309, −6.23335823569125001920137255739, −6.02922364482775022172083533449, −5.81885558169677874373478035254, −5.69018738939597738078411138806, −5.05909528642798878902088862602, −4.88470861381797690758866630384, −4.75816470690841193528849070244, −4.50958013114299861744887360528, −4.04853548720884862749081578565, −3.81783796757596073178725100313, −3.48574176551513432328104320130, −3.44172828692050778258738652739, −3.28653292807623554903241064502, −2.65557472819995092016172701871, −2.16989529920840359056549155876, −1.83577275211195568490860382596, −1.09198641351113775959050559666, −0.978045514965047791858217735623, −0.55655967611740390127177039663, −0.19472807488905400749879755380, 0.19472807488905400749879755380, 0.55655967611740390127177039663, 0.978045514965047791858217735623, 1.09198641351113775959050559666, 1.83577275211195568490860382596, 2.16989529920840359056549155876, 2.65557472819995092016172701871, 3.28653292807623554903241064502, 3.44172828692050778258738652739, 3.48574176551513432328104320130, 3.81783796757596073178725100313, 4.04853548720884862749081578565, 4.50958013114299861744887360528, 4.75816470690841193528849070244, 4.88470861381797690758866630384, 5.05909528642798878902088862602, 5.69018738939597738078411138806, 5.81885558169677874373478035254, 6.02922364482775022172083533449, 6.23335823569125001920137255739, 6.46747154302176764150305047309, 6.85144687383743232668091520067, 6.87432692669783178625408153198, 7.58033851108019026727045520910, 7.63111350276851282839529306859

Graph of the $Z$-function along the critical line