Properties

Label 8-2940e4-1.1-c1e4-0-2
Degree $8$
Conductor $7.471\times 10^{13}$
Sign $1$
Analytic cond. $303737.$
Root an. cond. $4.84520$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 9-s + 8·11-s − 12·19-s + 5·25-s − 24·29-s − 4·31-s − 32·41-s − 4·45-s − 32·55-s − 8·59-s + 28·61-s − 16·89-s + 48·95-s + 8·99-s + 32·101-s − 28·109-s + 38·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s + 96·145-s + 149-s + 151-s + 16·155-s + ⋯
L(s)  = 1  − 1.78·5-s + 1/3·9-s + 2.41·11-s − 2.75·19-s + 25-s − 4.45·29-s − 0.718·31-s − 4.99·41-s − 0.596·45-s − 4.31·55-s − 1.04·59-s + 3.58·61-s − 1.69·89-s + 4.92·95-s + 0.804·99-s + 3.18·101-s − 2.68·109-s + 3.45·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 7.97·145-s + 0.0819·149-s + 0.0813·151-s + 1.28·155-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(303737.\)
Root analytic conductor: \(4.84520\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.2513659431\)
\(L(\frac12)\) \(\approx\) \(0.2513659431\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2^2$ \( 1 + 4 T + 11 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
7 \( 1 \)
good11$C_2^2$ \( ( 1 - 4 T + 5 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T + 47 T^{2} - 8 p T^{3} + p^{2} T^{4} )( 1 + 8 T + 47 T^{2} + 8 p T^{3} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 + 6 T + 17 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 42 T^{2} + 1235 T^{4} + 42 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 + 2 T - 27 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^3$ \( 1 + 58 T^{2} + 1995 T^{4} + 58 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 + 78 T^{2} + 3875 T^{4} + 78 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^3$ \( 1 + 70 T^{2} + 2091 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 + 4 T - 43 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 13 T + p T^{2} )^{2}( 1 - T + p T^{2} )^{2} \)
67$C_2^3$ \( 1 + 118 T^{2} + 9435 T^{4} + 118 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 97 T^{2} + p^{2} T^{4} )( 1 + 143 T^{2} + p^{2} T^{4} ) \)
79$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 90 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 8 T - 25 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 94 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.28184233568045228983144273209, −5.98596763636294739369667124980, −5.94484160721340019806129844978, −5.48459609624045875983809038329, −5.42494547525023399183097022369, −5.15339370950082611779571595839, −5.00645988828839004505332497590, −4.53704001163914126069939408627, −4.52195087385897837808316065985, −4.30620370740051592516843906661, −3.91217647509236235378160640900, −3.83224199457062723471694908881, −3.69454764984263134861524948730, −3.62763645680479679820125314504, −3.59317916050644098694125908520, −3.03023538235333097740385598135, −2.93797129082118031697706793239, −2.23241214561685318696293250650, −2.14241762726067597876128037637, −1.83928915122763683636838296812, −1.69542043482815639547967671937, −1.57630842340526330756933027956, −1.04572725777777401426611315205, −0.42934143909950737326126646051, −0.12894544989900455822454417214, 0.12894544989900455822454417214, 0.42934143909950737326126646051, 1.04572725777777401426611315205, 1.57630842340526330756933027956, 1.69542043482815639547967671937, 1.83928915122763683636838296812, 2.14241762726067597876128037637, 2.23241214561685318696293250650, 2.93797129082118031697706793239, 3.03023538235333097740385598135, 3.59317916050644098694125908520, 3.62763645680479679820125314504, 3.69454764984263134861524948730, 3.83224199457062723471694908881, 3.91217647509236235378160640900, 4.30620370740051592516843906661, 4.52195087385897837808316065985, 4.53704001163914126069939408627, 5.00645988828839004505332497590, 5.15339370950082611779571595839, 5.42494547525023399183097022369, 5.48459609624045875983809038329, 5.94484160721340019806129844978, 5.98596763636294739369667124980, 6.28184233568045228983144273209

Graph of the $Z$-function along the critical line