Properties

Label 8-2940e4-1.1-c0e4-0-2
Degree $8$
Conductor $7.471\times 10^{13}$
Sign $1$
Analytic cond. $4.63465$
Root an. cond. $1.21130$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 2·5-s + 9-s − 2·20-s + 25-s + 36-s − 8·41-s − 2·45-s − 64-s + 4·89-s + 100-s − 4·101-s − 4·109-s + 2·121-s + 2·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s − 8·164-s + 167-s − 4·169-s + 173-s + ⋯
L(s)  = 1  + 4-s − 2·5-s + 9-s − 2·20-s + 25-s + 36-s − 8·41-s − 2·45-s − 64-s + 4·89-s + 100-s − 4·101-s − 4·109-s + 2·121-s + 2·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s − 8·164-s + 167-s − 4·169-s + 173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(4.63465\)
Root analytic conductor: \(1.21130\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.1800408301\)
\(L(\frac12)\) \(\approx\) \(0.1800408301\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - T^{2} + T^{4} \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2$ \( ( 1 + T + T^{2} )^{2} \)
7 \( 1 \)
good11$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{4} \)
17$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
19$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
31$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
37$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
41$C_1$ \( ( 1 + T )^{8} \)
43$C_2$ \( ( 1 + T^{2} )^{4} \)
47$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
67$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{4} \)
89$C_2$ \( ( 1 - T + T^{2} )^{4} \)
97$C_2$ \( ( 1 + T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.50541707819806403067222036354, −6.23821146358369771826364324617, −6.23012269315381793809672239792, −5.85533585277973196116405765934, −5.46641493463402487236926179943, −5.21132738450774652616288641373, −5.15292917365827369586545621938, −4.91686797166519555421729354156, −4.90005316796233294813925979236, −4.54802536982248307831796914376, −4.22167165803769342033650478138, −3.99134073744599441017749522013, −3.83986521937622348563798421224, −3.80168843215814842436338145467, −3.32072661100767138967247509774, −3.31885216328517251685205956689, −3.02437970030273387139835011371, −2.95142353047164749026757425566, −2.39640719072856977584623391730, −2.08700406865543474991601139592, −1.84742648054615767791885384897, −1.78290867171680246231066947086, −1.23654153983932471407331482978, −1.21202480662362672384843919771, −0.16593468439315686064866122312, 0.16593468439315686064866122312, 1.21202480662362672384843919771, 1.23654153983932471407331482978, 1.78290867171680246231066947086, 1.84742648054615767791885384897, 2.08700406865543474991601139592, 2.39640719072856977584623391730, 2.95142353047164749026757425566, 3.02437970030273387139835011371, 3.31885216328517251685205956689, 3.32072661100767138967247509774, 3.80168843215814842436338145467, 3.83986521937622348563798421224, 3.99134073744599441017749522013, 4.22167165803769342033650478138, 4.54802536982248307831796914376, 4.90005316796233294813925979236, 4.91686797166519555421729354156, 5.15292917365827369586545621938, 5.21132738450774652616288641373, 5.46641493463402487236926179943, 5.85533585277973196116405765934, 6.23012269315381793809672239792, 6.23821146358369771826364324617, 6.50541707819806403067222036354

Graph of the $Z$-function along the critical line