Properties

Label 8-2925e4-1.1-c0e4-0-3
Degree $8$
Conductor $7.320\times 10^{13}$
Sign $1$
Analytic cond. $4.54079$
Root an. cond. $1.20820$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 10·9-s + 2·11-s + 2·13-s + 16-s − 4·19-s − 20·27-s − 2·29-s − 8·33-s + 4·37-s − 8·39-s − 2·41-s + 2·47-s − 4·48-s − 4·53-s + 16·57-s + 4·71-s + 4·73-s + 2·79-s + 35·81-s + 2·83-s + 8·87-s + 4·89-s + 20·99-s − 16·111-s − 4·113-s + 20·117-s + ⋯
L(s)  = 1  − 4·3-s + 10·9-s + 2·11-s + 2·13-s + 16-s − 4·19-s − 20·27-s − 2·29-s − 8·33-s + 4·37-s − 8·39-s − 2·41-s + 2·47-s − 4·48-s − 4·53-s + 16·57-s + 4·71-s + 4·73-s + 2·79-s + 35·81-s + 2·83-s + 8·87-s + 4·89-s + 20·99-s − 16·111-s − 4·113-s + 20·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(4.54079\)
Root analytic conductor: \(1.20820\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 5^{8} \cdot 13^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4192644656\)
\(L(\frac12)\) \(\approx\) \(0.4192644656\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + T )^{4} \)
5 \( 1 \)
13$C_2$ \( ( 1 - T + T^{2} )^{2} \)
good2$C_2^3$ \( 1 - T^{4} + T^{8} \)
7$C_2^3$ \( 1 - T^{4} + T^{8} \)
11$C_2$$\times$$C_2^2$ \( ( 1 - T + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
17$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
19$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 + T^{2} )^{2} \)
23$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
29$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
31$C_2^3$ \( 1 - T^{4} + T^{8} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T^{2} )^{2} \)
41$C_2$$\times$$C_2^2$ \( ( 1 + T + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
43$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
47$C_2$$\times$$C_2^2$ \( ( 1 - T + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
53$C_2$ \( ( 1 + T + T^{2} )^{4} \)
59$C_2^3$ \( 1 - T^{4} + T^{8} \)
61$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
67$C_2^3$ \( 1 - T^{4} + T^{8} \)
71$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T^{2} )^{2} \)
73$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T^{2} )^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
83$C_2$$\times$$C_2^2$ \( ( 1 - T + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
89$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T^{2} )^{2} \)
97$C_2^3$ \( 1 - T^{4} + T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.37860111696882272943935716871, −6.27178089563315163664028425376, −6.07801557565012339760402147131, −6.04125062300452721235416149510, −5.75871335249062348630871336349, −5.25638626374358938827516945752, −5.14988178273420134382604218256, −5.08858830245255673536930640089, −4.99521539836493012706220854013, −4.58915883096069873916596771733, −4.30076231456971782866763306704, −4.16985925833762368292470743684, −4.03329527102991937547660542722, −3.84899247429965359862985175003, −3.59097158342244755556324677901, −3.58328680220920211981000917737, −3.33878965528293960305401460200, −2.27797494818232771576332496444, −2.24060520681680874517357841782, −2.00693177149277525959063363460, −1.91019180928855719358095150549, −1.21463547169001404971004794987, −1.12622466143218779620103461745, −1.04671269292018965834359191463, −0.46716688699010155285830984802, 0.46716688699010155285830984802, 1.04671269292018965834359191463, 1.12622466143218779620103461745, 1.21463547169001404971004794987, 1.91019180928855719358095150549, 2.00693177149277525959063363460, 2.24060520681680874517357841782, 2.27797494818232771576332496444, 3.33878965528293960305401460200, 3.58328680220920211981000917737, 3.59097158342244755556324677901, 3.84899247429965359862985175003, 4.03329527102991937547660542722, 4.16985925833762368292470743684, 4.30076231456971782866763306704, 4.58915883096069873916596771733, 4.99521539836493012706220854013, 5.08858830245255673536930640089, 5.14988178273420134382604218256, 5.25638626374358938827516945752, 5.75871335249062348630871336349, 6.04125062300452721235416149510, 6.07801557565012339760402147131, 6.27178089563315163664028425376, 6.37860111696882272943935716871

Graph of the $Z$-function along the critical line